Positive closed classes in the three-valued logic
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 1, pp. 67-83

Voir la notice de l'article provenant de la source Math-Net.Ru

Theoretical premises are formulated and a way is determined to construct the positive classification of the $k$-valued logic functions set. All 194 positive closed classes in the three-valued logic are found. The description is given both by means of endomorphism semigroups and by means of finding the positive bases. Tab. 13, bibliogr. 30.
Keywords: positive closure operator, three-valued logic functions.
@article{DA_2014_21_1_a5,
     author = {S. S. Marchenkov},
     title = {Positive closed classes in the three-valued logic},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {67--83},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_1_a5/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - Positive closed classes in the three-valued logic
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 67
EP  - 83
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_1_a5/
LA  - ru
ID  - DA_2014_21_1_a5
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T Positive closed classes in the three-valued logic
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 67-83
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_1_a5/
%G ru
%F DA_2014_21_1_a5
S. S. Marchenkov. Positive closed classes in the three-valued logic. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 1, pp. 67-83. http://geodesic.mathdoc.fr/item/DA_2014_21_1_a5/