Positive closed classes in the three-valued logic
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 1, pp. 67-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theoretical premises are formulated and a way is determined to construct the positive classification of the $k$-valued logic functions set. All 194 positive closed classes in the three-valued logic are found. The description is given both by means of endomorphism semigroups and by means of finding the positive bases. Tab. 13, bibliogr. 30.
Keywords: positive closure operator, three-valued logic functions.
@article{DA_2014_21_1_a5,
     author = {S. S. Marchenkov},
     title = {Positive closed classes in the three-valued logic},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {67--83},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_1_a5/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - Positive closed classes in the three-valued logic
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 67
EP  - 83
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_1_a5/
LA  - ru
ID  - DA_2014_21_1_a5
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T Positive closed classes in the three-valued logic
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 67-83
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_1_a5/
%G ru
%F DA_2014_21_1_a5
S. S. Marchenkov. Positive closed classes in the three-valued logic. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 1, pp. 67-83. http://geodesic.mathdoc.fr/item/DA_2014_21_1_a5/

[1] Bodnarchuk V. G., Kaluzhnin L. A., Kotov V. N., Romov B. A., “Teoriya Galua dlya algebr Posta”, Kibernetika, 1969, no. 3, 1–10 | Zbl

[2] Danilchenko A. F., “O parametricheskoi vyrazimosti funktsii trëkhznachnoi logiki”, Algebra i logika, 16:4 (1977), 397–416 | MR

[3] Danilchenko A. F., “Parametricheski zamknutye klassy funktsii trëkhznachnoi logiki”, Izv. AN MSSR, 1978, no. 2, 13–20 | MR

[4] Kuznetsov A. V., “O sredstvakh dlya obnaruzheniya nevyvodimosti i nevyrazimosti”, Logicheskii vyvod, Nauka, M., 1979, 5–33

[5] Marchenkov S. S., “Osnovnye otnosheniya $S$-klassifikatsii funktsii mnogoznachnoi logiki”, Diskret. matematika, 8:1 (1996), 99–128 | DOI | MR | Zbl

[6] Marchenkov S. S., “O vyrazimosti funktsii mnogoznachnoi logiki v nekotorykh logiko-funktsionalnykh yazykakh”, Diskret. matematika, 11:4 (1999), 110–126 | MR | Zbl

[7] Marchenkov S. S., Zamknutye klassy bulevykh funktsii, Fizmatlit, M., 2000, 126 pp. | MR | Zbl

[8] Marchenkov S. S., $S$-klassifikatsiya funktsii trëkhznachnoi logiki, Fizmatlit, M., 2001, 79 pp. | Zbl

[9] Marchenkov S. S., “Diskriminatornye klassy trëkhznachnoi logiki”, Mat. voprosy kibernetiki, 12, 2003, 15–26

[10] Marchenkov S. S., “Operatory zamykaniya s razvetvleniem po predikatu”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 2003, no. 6, 37–39 | MR | Zbl

[11] Marchenkov S. S., “A criterion for positive completeness in ternary logic”, J. Appl. Industr. Math., 1:4 (2007), 481–488 | DOI | MR | Zbl

[12] Marchenkov S. S., “Discriminator positive complete classes in ternary logic”, J. Appl. Industr. Math., 2:4 (2008), 542–549 | DOI | MR | Zbl

[13] Marchenkov S. S., “O zamknutykh klassakh funktsii $k$-znachnoi logiki, opredelyaemykh odnim endomorfizmom”, Diskret. analiz i issled. operatsii, 16:6 (2009), 52–67 | MR | Zbl

[14] Marchenkov S. S., “Pozitivno zamknutye klassy trëkhznachnoi logiki, porozhdaemye odnomestnymi funktsiyami”, Diskret. matematika, 21:3 (2009), 37–44 | DOI | MR | Zbl

[15] Marchenkov S. S., “The closure operator in a multivalued logic basen on functional equations”, J. Appl. Industr. Math., 5:3 (2011), 383–390 | DOI | MR | MR | Zbl

[16] Marchenkov S. S., “FE classification of functions of many-valued logic”, Moscow Univer. Comput. Math. Cybern., 35:2 (2011), 89–96 | DOI | MR | Zbl

[17] Marchenkov S. S., “O klassifikatsiyakh funktsii mnogoznachnoi logiki s pomoschyu grupp avtomorfizmov”, Diskret. analiz i issled. operatsii, 18:4 (2011), 66–76 | MR | Zbl

[18] Marchenkov S. S., “Atomy reshëtki pozitivno zamknutykh klassov trëkhznachnoi logiki”, Diskret. matematika, 24:2 (2012), 79–91 | DOI | MR

[19] Marchenkov S. S., “Operator of positive closure”, Dokl. Math., 85:1 (2012), 102–103 | DOI | MR | Zbl

[20] Marchenkov S. S., “Definition of positive closed classes by endomorphism semigroups”, Discrete Math. Appl., 22:5–6 (2013), 511–520 | DOI | MR | Zbl

[21] Nguen Van Khoa, “O strukture samodvoistvennykh zamknutykh klassov trëkhznachnoi logiki”, Diskret. matematika, 4:4 (1992), 82–95 | MR | Zbl

[22] Yanov Yu. I., Muchnik A. A., “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh bazisa”, Dokl. AN SSSR, 127:1 (1959), 44–46 | Zbl

[23] Barris S., “Primitive positive clones which are endomorphism clones”, Algebra Univers., 24 (1987), 41–49 | DOI | MR

[24] Barris S., Willard R., “Finitely many primitive positive clones”, Proc. Amer. Math. Soc., 101:3 (1987), 427–430 | DOI | MR

[25] Danil'čenko A. F., “On parametrical expressibility of the functions of $k$-valued logic”, Colloq. Math. Soc. J. Bolyai, 28 (1981), 147–159 | MR | Zbl

[26] Geiger D., “Closed systems of functions and predicates”, Pacific J. Math., 27 (1968), 95–100 | DOI | MR | Zbl

[27] Hermann M., “On Boolean primitive positive clones”, Discrete Math., 308 (2008), 3151–3162 | DOI | MR | Zbl

[28] Snow J. W., “Generating primitive positive clones”, Algebra Univers., 44 (2000), 169–186 | DOI | MR

[29] Szabó L., “Concrete representation of related strucrures of universal algebras. I”, Acta Sci. Math., 40 (1978), 175–184 | MR | Zbl

[30] Szabó L., “On the lattice of clones acting bicentrally”, Acta Cybern., 6 (1984), 381–388 | MR