Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2014_21_1_a3, author = {A. A. Evdokimov and T. I. Fedoryaeva}, title = {On the description problem of the diversity vectors of balls}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {44--52}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2014_21_1_a3/} }
TY - JOUR AU - A. A. Evdokimov AU - T. I. Fedoryaeva TI - On the description problem of the diversity vectors of balls JO - Diskretnyj analiz i issledovanie operacij PY - 2014 SP - 44 EP - 52 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2014_21_1_a3/ LA - ru ID - DA_2014_21_1_a3 ER -
A. A. Evdokimov; T. I. Fedoryaeva. On the description problem of the diversity vectors of balls. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 1, pp. 44-52. http://geodesic.mathdoc.fr/item/DA_2014_21_1_a3/
[1] Evdokimov A. A., “Lokalno izometricheskie vlozheniya grafov i svoistvo prodolzheniya metriki”, Sib. zhurn. issled. operatsii, 1:1 (1994), 5–12 | MR | Zbl
[2] Evdokimov A. A., “Vlozheniya v klasse parametricheskikh otobrazhenii ogranichennogo iskazheniya”, Uchen. zap. Kazansk. gos. un-ta, 151, no. 2, 2009, 72–79 | Zbl
[3] Rychkov K. L., “Sufficient conditions for the existence of a graph with a given variety of balls”, J. Appl. Industr. Math., 1:3 (2007), 380–385 | DOI | MR | Zbl
[4] Fedoryaeva T. I., “Operations and isometric embeddings of graphs related to the metric prolongation property”, Discrete Anal. Oper. Res., 391 (1997), 31–49 | DOI | MR | Zbl | Zbl
[5] Fedoryaeva T. I., “O raznoobrazii metricheskikh sharov v grafakh”, Problemy teoreticheskoi kibernetiki, Tez. dokl. XIV Mezhdunar. konf. (Penza, 23–28 maya 2005 g.), Izd-vo mekh.-mat. fak-ta MGU, M., 2005, 159
[6] Fedoryaeva T. I., “Raznoobrazie sharov v metricheskikh prostranstvakh derevev”, Diskret. analiz i issled. operatsii. Ser. 1, 12:3 (2005), 74–84 | MR | Zbl
[7] Fedoryaeva T. I., “Diversity vectors of balls in graphs and estimates of the components of the vectors”, J. Appl. Industr. Math., 2:3 (2008), 341–357 | DOI | MR | Zbl
[8] Fedoryaeva T. I., “Tochnye verkhnie otsenki chisla razlichnykh sharov zadannogo radiusa v grafakh s fiksirovannymi chislom vershin i diametrom”, Diskret. analiz i issled. operatsii, 16:6 (2009), 74–92 | MR | Zbl
[9] Fedoryaeva T. I., “On the graphs with given diameter, number of vertices, and local diversity of balls”, J. Appl. Industr. Math., 5:1 (2011), 44–50 | DOI | MR | Zbl
[10] Fedoryaeva T. I., “Majorants and minorants for the classes of graphs with fixed diameter and number of vertices”, J. Appl. Industr. Math., 7:2 (2013), 153–165 | DOI | MR
[11] Kharari F., Teoriya grafov, Mir, M., 1973, 300 pp. | MR