On the description problem of the diversity vectors of balls
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 1, pp. 44-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The diversity vectors of balls are studied (the $i$th component of the vector is equal to the number of different balls of radius $i$) for ordinary connected graphs. The description problem of the diversity vectors of balls is solved for graphs with a small diameter. Ill. 3, bibliogr. 11.
Keywords: graph, metric ball, radius of ball, the number of balls, the diversity vector of balls.
@article{DA_2014_21_1_a3,
     author = {A. A. Evdokimov and T. I. Fedoryaeva},
     title = {On the description problem of the diversity vectors of balls},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {44--52},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_1_a3/}
}
TY  - JOUR
AU  - A. A. Evdokimov
AU  - T. I. Fedoryaeva
TI  - On the description problem of the diversity vectors of balls
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 44
EP  - 52
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_1_a3/
LA  - ru
ID  - DA_2014_21_1_a3
ER  - 
%0 Journal Article
%A A. A. Evdokimov
%A T. I. Fedoryaeva
%T On the description problem of the diversity vectors of balls
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 44-52
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_1_a3/
%G ru
%F DA_2014_21_1_a3
A. A. Evdokimov; T. I. Fedoryaeva. On the description problem of the diversity vectors of balls. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 1, pp. 44-52. http://geodesic.mathdoc.fr/item/DA_2014_21_1_a3/

[1] Evdokimov A. A., “Lokalno izometricheskie vlozheniya grafov i svoistvo prodolzheniya metriki”, Sib. zhurn. issled. operatsii, 1:1 (1994), 5–12 | MR | Zbl

[2] Evdokimov A. A., “Vlozheniya v klasse parametricheskikh otobrazhenii ogranichennogo iskazheniya”, Uchen. zap. Kazansk. gos. un-ta, 151, no. 2, 2009, 72–79 | Zbl

[3] Rychkov K. L., “Sufficient conditions for the existence of a graph with a given variety of balls”, J. Appl. Industr. Math., 1:3 (2007), 380–385 | DOI | MR | Zbl

[4] Fedoryaeva T. I., “Operations and isometric embeddings of graphs related to the metric prolongation property”, Discrete Anal. Oper. Res., 391 (1997), 31–49 | DOI | MR | Zbl | Zbl

[5] Fedoryaeva T. I., “O raznoobrazii metricheskikh sharov v grafakh”, Problemy teoreticheskoi kibernetiki, Tez. dokl. XIV Mezhdunar. konf. (Penza, 23–28 maya 2005 g.), Izd-vo mekh.-mat. fak-ta MGU, M., 2005, 159

[6] Fedoryaeva T. I., “Raznoobrazie sharov v metricheskikh prostranstvakh derevev”, Diskret. analiz i issled. operatsii. Ser. 1, 12:3 (2005), 74–84 | MR | Zbl

[7] Fedoryaeva T. I., “Diversity vectors of balls in graphs and estimates of the components of the vectors”, J. Appl. Industr. Math., 2:3 (2008), 341–357 | DOI | MR | Zbl

[8] Fedoryaeva T. I., “Tochnye verkhnie otsenki chisla razlichnykh sharov zadannogo radiusa v grafakh s fiksirovannymi chislom vershin i diametrom”, Diskret. analiz i issled. operatsii, 16:6 (2009), 74–92 | MR | Zbl

[9] Fedoryaeva T. I., “On the graphs with given diameter, number of vertices, and local diversity of balls”, J. Appl. Industr. Math., 5:1 (2011), 44–50 | DOI | MR | Zbl

[10] Fedoryaeva T. I., “Majorants and minorants for the classes of graphs with fixed diameter and number of vertices”, J. Appl. Industr. Math., 7:2 (2013), 153–165 | DOI | MR

[11] Kharari F., Teoriya grafov, Mir, M., 1973, 300 pp. | MR