On upper bound of non-branching programs unreliability at one-type constant faults on the computational operators outputs
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 1, pp. 30-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The realization of Boolean functions by non-branching programs with a conditional stop is considered in an arbitrary complete finite basis. It is supposed that conditional stop-operators are absolutely reliable and all computational operators are prone to one type constant faults at the outputs independently of each other with probability $\varepsilon\in(0,1/2)$. For the basis, the upper bound $\varepsilon+4\varepsilon^2$ is obtained for unreliability of non-branching programs realizing any Boolean function for all $\varepsilon\in(0,1/960]$. Ill. 4, bibliogr. 6.
Keywords: Boolean function, non-branching program, conditional stop-operator, synthesis, reliability, one-type constant faults.
@article{DA_2014_21_1_a2,
     author = {S. M. Grabovskaya},
     title = {On upper bound of non-branching programs unreliability at one-type constant faults on the computational operators outputs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {30--43},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_1_a2/}
}
TY  - JOUR
AU  - S. M. Grabovskaya
TI  - On upper bound of non-branching programs unreliability at one-type constant faults on the computational operators outputs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 30
EP  - 43
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_1_a2/
LA  - ru
ID  - DA_2014_21_1_a2
ER  - 
%0 Journal Article
%A S. M. Grabovskaya
%T On upper bound of non-branching programs unreliability at one-type constant faults on the computational operators outputs
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 30-43
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_1_a2/
%G ru
%F DA_2014_21_1_a2
S. M. Grabovskaya. On upper bound of non-branching programs unreliability at one-type constant faults on the computational operators outputs. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 1, pp. 30-43. http://geodesic.mathdoc.fr/item/DA_2014_21_1_a2/

[1] Alekhina M. A., “O nadëzhnosti skhem pri odnotipnykh konstantnykh neispravnostyakh na vykhodakh elementov”, Mat. X Mezhdunar. seminara “Diskretnaya matematika i eë prilozheniya” (Moskva, MGU, 1–6 fevralya 2010 g.), Izd-vo mekh.-mat. fak-ta MGU, M., 2010, 83–85

[2] Alekhina M. A., Sintez asimptoticheski optimalnykh po nadëzhnosti skhem, IITs PGU, Penza, 2006, 156 pp.

[3] Grabovskaya S. M., Asimptoticheski optimalnye po nadëzhnosti nevetvyaschiesya programmy s operatorom uslovnoi ostanovki, Dis. $\dots$ kand. fiz.-mat. nauk: 01.01.09, Penza, 2012, 89 pp.

[4] Redkin N. P., “O polnykh proveryayuschikh testakh”, Mat. voprosy kibernetiki, 2, 1989, 198–222 | MR

[5] Chashkin A. V., “O srednem vremeni vychisleniya znachenii bulevykh funktsii”, Diskret. analiz i issled. operatsii. Ser. 1, 4:1 (1997), 60–78 | MR | Zbl

[6] Yablonskii S. V., “Asimptoticheski nailuchshii metod sinteza nadëzhnykh skhem iz nenadëzhnykh elementov”, Banach Center Publ., 7, 1982, 11–19 | MR