The online algorithms for the problem of finding the maximum of the unimodal function
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 6, pp. 16-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an online problem of auto-focusing of a camera. The sharpness function is smooth and it has the only maximum on the interval. The values of the function are unknown. We have a measuring device that can move to any point of the interval and compute the value of the sharpness function in this point. The measuring device spends energy for moving to the point and computing the value. We need to localize the maximum of the sharpness function in the $\varepsilon$-interval so as to minimize the energy consumption. Two algorithms, Golden Section Search and Dichotomy, are considered. We also present three new algorithms for solving this problem. For these algorithms, we study their worst and best case ratios. Bibliogr. 6.
Keywords: online problem, online algorithm, minimization of energy.
@article{DA_2013_20_6_a1,
     author = {Yu. Yu. Velikanova},
     title = {The online algorithms for the problem of finding the maximum of the unimodal function},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {16--29},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_6_a1/}
}
TY  - JOUR
AU  - Yu. Yu. Velikanova
TI  - The online algorithms for the problem of finding the maximum of the unimodal function
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 16
EP  - 29
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_6_a1/
LA  - ru
ID  - DA_2013_20_6_a1
ER  - 
%0 Journal Article
%A Yu. Yu. Velikanova
%T The online algorithms for the problem of finding the maximum of the unimodal function
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 16-29
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_6_a1/
%G ru
%F DA_2013_20_6_a1
Yu. Yu. Velikanova. The online algorithms for the problem of finding the maximum of the unimodal function. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 6, pp. 16-29. http://geodesic.mathdoc.fr/item/DA_2013_20_6_a1/

[1] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[2] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh zadach klasternogo analiza vektornykh posledovatelnostei”, Diskret. analiz i issled. operatsii, 20:2 (2013), 47–57 | MR

[3] Kelmanov A. V., Romanchenko S. M., Khamidullin S. A., “Priblizhënnye algoritmy dlya nekotorykh trudnoreshaemykh zadach poiska podposledovatelnosti vektorov”, Diskret. analiz i issled. operatsii, 19:3 (2012), 27–38 | MR

[4] Krotkov E., “Focusing”, Int. J. Comput. Vision, 1:3 (1988), 223–237

[5] Shen Ch.-H., Chen H. H., “Robust focus measure for low-contrast images”, ICCE' 2006, 2006, 69–70 | DOI

[6] Fiat A., Woeginger G. J., “Online algorithms”, The state of the art, Lect. Notes Comput. Sci., 1442, Springer-Verl., Berlin, 1998, 13–16 | DOI | MR