Asymptotically reliability optimal schemes in special bases
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 6, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider realization of Boolean functions by circuits composed of unreliable functional elements in some complete finite basis $B\subset B_3$ ($B_3$ is the set of all Boolean functions of three variables $x_1,x_2$ and $x_3$). We assume that all elements are independently of each other subjected to inverse failures at the output with the probability $\varepsilon\in(0;1/2)$. We find bases in which it is possible to realize almost all Boolean functions by asymptotically reliability optimal circuits with unreliability $3\varepsilon$ with $\varepsilon\to0$. We proved that there are no other bases where it's possible to realize almost all Boolean functions by asymptotically reliability optimal circuits with unreliability $3\varepsilon$. Bibliogr. 9.
Keywords: unreliable functional element, asymptotically reliability optimal circuit, inverse failure on outputs of elements, synthesis of a circuit composed of unreliable elements.
@article{DA_2013_20_6_a0,
     author = {A. V. Vasin},
     title = {Asymptotically reliability optimal schemes in special bases},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_6_a0/}
}
TY  - JOUR
AU  - A. V. Vasin
TI  - Asymptotically reliability optimal schemes in special bases
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 3
EP  - 15
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_6_a0/
LA  - ru
ID  - DA_2013_20_6_a0
ER  - 
%0 Journal Article
%A A. V. Vasin
%T Asymptotically reliability optimal schemes in special bases
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 3-15
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_6_a0/
%G ru
%F DA_2013_20_6_a0
A. V. Vasin. Asymptotically reliability optimal schemes in special bases. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 6, pp. 3-15. http://geodesic.mathdoc.fr/item/DA_2013_20_6_a0/

[1] Alëkhina M. A., Sintez asimptoticheski optimalnykh po nadëzhnosti skhem iz nenadëzhnykh elementov, IITs PGU, Penza, 2006, 156 pp.

[2] Alëkhina M. A., “O nadëzhnosti i slozhnosti skhem v bazise $\{x|y\}$ pri inversnykh neispravnostyakh elementov”, Diskret. analiz i issled. operatsii. Ser. 1, 12:2 (2005), 3–11 | MR | Zbl

[3] Alëkhina M. A., Vasin A. V., “O nadëzhnosti skhem v bazisakh, soderzhaschikh funktsii ne bolee chem trëkh peremennykh”, Uch. zap. Kazan. gos. un-ta. Ser. Fiz-mat. nauki, 151, no. 2, 2009, 25–35 | Zbl

[4] Alëkhina M. A., Vasin A. V., “Dostatochnye usloviya realizatsii bulevykh funktsii asimptoticheski optimalnymi skhemami s nenadëzhnostyu $2\varepsilon$”, Izv. vuzov. Matematika, 2010, no. 5, 79–82 | MR

[5] Alëkhina M. A., Pichugina P. G., “O nadëzhnosti dvoistvennykh skhem v polnom konechnom bazise”, Mat. XVIII mezhdunar. shk.-seminara “Sintez i slozhnost upravlyayuschikh sistem” (g. Penza, 28 sentyabrya – 3 oktyabrya 2009 g.), Izd-vo mekh.-mat. fak-ta MGU, M., 2009, 10–13

[6] Vasin A. V., “O funktsiyakh spetsialnogo vida”, Tr. VIII mezhdunar. konf. “Diskretnye modeli v teorii upravlyayuschikh sistem” (Lesnoi gorodok, Mosk. obl., 6–9 aprelya 2009 g.), MAKS Press, M., 2009, 43–47

[7] Vasin A. V., Mat. X mezhdunar. seminara “Diskretnaya matematika i eë prilozheniya” (Moskva, 1–6 fevralya 2010 g.), Izd-vo mekh.-mat. fak-ta MGU, M., 2010

[8] Vasin A. V., “Ob asimptoticheski optimalnykh skhemakh v bazise $\{\,\lnot\}$ pri inversnykh neispravnostyakh na vykhodakh elementov”, Diskret. analiz i issled. operatsii, 16:6 (2009), 12–22 | MR | Zbl

[9] Neiman Dzh., Avtomaty, Izd-vo inostr. lit., M., 1956, 68–139