Graph classification for quadratic bent functions in~6 variables
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 5, pp. 45-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classification problem for bent functions in few variables is considered. The classification for graphs of quadratic bent functions in 6 variables is given. The analysis of resulting graphs is made and new iterative constructions of bent functions are found. Tab. 2, bibliogr. 8.
Keywords: boolean function, nonlinearity, bent function, graph equivalence, iterative construction.
Mots-clés : algebraical normal form (ANF)
@article{DA_2013_20_5_a3,
     author = {E. P. Korsakova},
     title = {Graph classification for quadratic bent functions in~6 variables},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {45--57},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_5_a3/}
}
TY  - JOUR
AU  - E. P. Korsakova
TI  - Graph classification for quadratic bent functions in~6 variables
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 45
EP  - 57
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_5_a3/
LA  - ru
ID  - DA_2013_20_5_a3
ER  - 
%0 Journal Article
%A E. P. Korsakova
%T Graph classification for quadratic bent functions in~6 variables
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 45-57
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_5_a3/
%G ru
%F DA_2013_20_5_a3
E. P. Korsakova. Graph classification for quadratic bent functions in~6 variables. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 5, pp. 45-57. http://geodesic.mathdoc.fr/item/DA_2013_20_5_a3/

[1] Korsakova E. P., “Klassifikatsiya grafov ANF kvadratichnykh bent-funktsii ot shesti peremennykh”, Prikl. diskret. matematika, 2011, Prilozhenie No 4, 13–14

[2] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004, 470 pp. | MR

[3] Tokareva N. N., Nelineinye bulevy funktsii: bent-funktsii i ikh obobscheniya, LAP LAMBERT Acad. Publ., Saarbrucken, Germany, 2011, 180 pp.

[4] Carlet C., “On the confusion and diffusion properties of Maiorana–McFarland's and extended Maiorana–McFarland's functions”, J. Complexity, 20 (2004), 182–204 | DOI | MR | Zbl

[5] Carlet C., “Boolean functions for cryptography and error correcting codes”, Boolean methods and models, eds. P. Hammer, Y. Crama, Cambridge Univ. Press (to appear) http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf

[6] Dillon J. F., Elementary Hadamard difference sets, Thes. $\dots$ doct. phylosophy (mathematics), Univ. Maryland, College Park, 1974, 118 pp. | MR

[7] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Comb. Theory. Ser. A, 15:1 (1973), 1–10 | DOI | MR | Zbl

[8] Rothaus O., “On bent functions”, J. Comb. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl