Simple cycles in the $n$-cube with a~large group of automorphisms
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 4, pp. 88-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

The cycle automorphism in the $n$-cube is the automorphism of the cube that leaves the cycle in place and does not change its orientation. An upper bound for the order of the group of cycle automorphisms in the $n$-cube is found. We obtain the construction for building long simple cycles for which the order of the group reaches the upper bound. Bibliogr. 3.
Keywords: $n$-cube, cycle, lattice.
Mots-clés : automorphism, orbit
@article{DA_2013_20_4_a6,
     author = {A. L. Perezhogin},
     title = {Simple cycles in the $n$-cube with a~large group of automorphisms},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {88--97},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_4_a6/}
}
TY  - JOUR
AU  - A. L. Perezhogin
TI  - Simple cycles in the $n$-cube with a~large group of automorphisms
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 88
EP  - 97
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_4_a6/
LA  - ru
ID  - DA_2013_20_4_a6
ER  - 
%0 Journal Article
%A A. L. Perezhogin
%T Simple cycles in the $n$-cube with a~large group of automorphisms
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 88-97
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_4_a6/
%G ru
%F DA_2013_20_4_a6
A. L. Perezhogin. Simple cycles in the $n$-cube with a~large group of automorphisms. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 4, pp. 88-97. http://geodesic.mathdoc.fr/item/DA_2013_20_4_a6/

[1] Perezhogin A. L., “Ob avtomorfizmakh tsiklov v $n$-mernom bulevom kube”, Diskret. analiz i issled. operatsii. Ser. 1, 14:3 (2007), 67–79 | MR | Zbl

[2] Perezhogin A. L., “O pryamykh avtomorfizmakh gamiltonovykh tsiklov v $n$-mernom bulevom kube”, Diskret. analiz i issled. operatsii, 17:4 (2010), 32–42 | MR | Zbl

[3] Savage C. D., Winkler P., “Monotone Gray codes and the middle two levels problem”, J. Comb. Theory. Ser. A, 70:2 (1995), 230–248 | DOI | MR | Zbl