Stability analysis of the efficient solution to a~vector problem of a~maximum cut
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 4, pp. 27-35

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a MAX-CUT multicriteria problem. A formula for the stability radius of effective solutions is obtained in the case of the Hölder norm in the parameter space. Bibliogr. 18.
Keywords: multi-objectiveness, effective cut, stability radius, Hölder norm.
@article{DA_2013_20_4_a2,
     author = {V. A. Emelichev and K. G. Kuzmin},
     title = {Stability analysis of the efficient solution to a~vector problem of a~maximum cut},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {27--35},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_4_a2/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - K. G. Kuzmin
TI  - Stability analysis of the efficient solution to a~vector problem of a~maximum cut
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 27
EP  - 35
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_4_a2/
LA  - ru
ID  - DA_2013_20_4_a2
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A K. G. Kuzmin
%T Stability analysis of the efficient solution to a~vector problem of a~maximum cut
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 27-35
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_4_a2/
%G ru
%F DA_2013_20_4_a2
V. A. Emelichev; K. G. Kuzmin. Stability analysis of the efficient solution to a~vector problem of a~maximum cut. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 4, pp. 27-35. http://geodesic.mathdoc.fr/item/DA_2013_20_4_a2/