A lower bound on formula size of a~ternary linear function
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 4, pp. 15-26

Voir la notice de l'article provenant de la source Math-Net.Ru

The formula size of a ternary linear function that depends on $n$ variables is shown to be not less than $n^2+\frac32n-o(n)$. Bibliogr. 8.
Keywords: formula size, $\pi$-scheme, lower bound for the complexity.
@article{DA_2013_20_4_a1,
     author = {Yu. L. Vasil'ev and K. L. Rychkov},
     title = {A lower bound on formula size of a~ternary linear function},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {15--26},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_4_a1/}
}
TY  - JOUR
AU  - Yu. L. Vasil'ev
AU  - K. L. Rychkov
TI  - A lower bound on formula size of a~ternary linear function
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 15
EP  - 26
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_4_a1/
LA  - ru
ID  - DA_2013_20_4_a1
ER  - 
%0 Journal Article
%A Yu. L. Vasil'ev
%A K. L. Rychkov
%T A lower bound on formula size of a~ternary linear function
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 15-26
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_4_a1/
%G ru
%F DA_2013_20_4_a1
Yu. L. Vasil'ev; K. L. Rychkov. A lower bound on formula size of a~ternary linear function. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 4, pp. 15-26. http://geodesic.mathdoc.fr/item/DA_2013_20_4_a1/