Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2013_20_3_a3, author = {A. V. Seliverstov}, title = {On monomials in quadratic forms}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {65--70}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2013_20_3_a3/} }
A. V. Seliverstov. On monomials in quadratic forms. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 3, pp. 65-70. http://geodesic.mathdoc.fr/item/DA_2013_20_3_a3/
[1] Beresnev V. L., Diskretnye zadachi razmescheniya i polinomy ot bulevykh peremennykh, Izd-vo in-ta matematiki, Novosibirsk, 2005, 408 pp.
[2] Beresnev V. L., “Algoritmy lokalnogo poiska dlya zadachi konkurentnogo razmescheniya predpriyatii”, Avtomatika i telemekhanika, 2012, no. 3, 12–27
[3] Beresnev V. L., Goncharov E. N., Melnikov A. A., “Lokalnyi poisk po obobschënnoi okrestnosti dlya zadachi optimizatsii psevdobulevykh funktsii”, Diskret. analiz i issled. operatsii, 18:4 (2011), 3–16 | MR | Zbl
[4] Gorbunov K. Yu., Seliverstov A. V., Lyubetskii V. A., “Vzaimnoe raspolozhenie parallelnykh giperploskostei, kvadrik i vershin mnogomernogo kuba”, Probl. peredachi inform., 48:2 (2012), 113–120
[5] Kolokolov A. A., Orlovskaya T. G., Rybalka M. F., “Analiz algoritmov tselochislennogo programmirovaniya s ispolzovaniem $L$-razbieniya i unimodulyarnykh preobrazovanii”, Avtomatika i telemekhanika, 2012, no. 2, 178–190
[6] Maksimenko A. N., “Mnogogranniki zadachi o vypolnimosti yavlyayutsya granyami mnogogrannika zadachi kommivoyazhëra”, Diskret. analiz i issled. operatsii, 18:3 (2011), 76–83 | MR | Zbl
[7] Maksimenko A. N., “Analog teoremy Kuka dlya mnogogrannikov”, Izv. vuzov. Matematika, 2012, no. 8, 34–42 | Zbl
[8] Seliverstov A. V., “Zamechaniya o raspolozheniyakh tochek na kvadrikakh”, Modelirovanie i analiz inform. sistem, 19:4 (2012), 72–77
[9] Seliverstov A. V., Lyubetskii V. A., “O simmetrichnykh matritsakh s neopredelennoi glavnoi diagonalyu”, Probl. peredachi inform., 45:3 (2009), 73–78 | MR | Zbl
[10] Seliverstov A. V., Lyubetskii V. A., “O formakh, ravnykh nulyu v kazhdoi vershine kuba”, Informatsionnye protsessy, 11:3 (2011), 330–335
[11] Skhreiver A., Teoriya lineinogo i tselochislennogo programmirovaniya, v. 1, Mir, M., 1991, 360 pp. | MR
[12] Ahlatçioğlu A., Bussieck M., Esen M., Guignard M., Jagla J.-H., Meeraus A., “Combining QCR and CHR for convex quadratic pure 0–1 programming problems with linear constraints”, Ann. Oper. Res., 199:1 (2012), 33–49 | DOI | MR | Zbl
[13] Avis D., “Computational experience with the reverse search vertex enumeration algorithm”, Optim. Methods Softw., 10:2 (1998), 107–124 | DOI | MR | Zbl
[14] Avis D., Fukuda K., “A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra”, Discrete Comput. Geom., 8:1 (1992), 295–313 | DOI | MR | Zbl
[15] Billera L. J., Sarangarajan A., “All 0-1 polytopes are traveling salesman polytopes”, Combinatorica, 16:2 (1996), 175–188 | DOI | MR | Zbl
[16] Billionnet A., Elloumi S., “Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem”, Math. Program., 109:1 (2007), 55–68 | DOI | MR | Zbl
[17] Fukasawa R., Goycoolea M., “On the exact separation of mixed integer knapsack cuts”, Math. Program., 128:1–2 (2011), 19–41 | DOI | MR | Zbl
[18] Galli L., Kaparis K., Letchford A. N., “Gap inequalities for non-convex mixed-integer quadratic programs”, Oper. Res. Lett., 39:5 (2011), 297–300 | MR | Zbl
[19] Padberg M., “The boolean quadric polytope: some characteristics, facets, and relatives”, Math. Program., 45:1–3 (1989), 139–172 | DOI | MR | Zbl
[20] Tamir A., “New pseudopolynomial complexity bounds for the bounded and other integer knapsack related problems”, Oper. Res. Lett., 37:5 (2009), 303–306 | DOI | MR | Zbl
[21] Wang Y., Lü Z., Glover F., Hao J.-K., “Path relinking for unconstrained binary quadratic programming”, Eur. J. Oper. Res., 223:3 (2012), 595–604 | DOI | MR