On partitions of an $n$-cube into perfect binary codes
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 2, pp. 15-25

Voir la notice de l'article provenant de la source Math-Net.Ru

A switching construction of partitions of an $n$-cube is studied. A new lower bound on the number of such partitions of rank that exceeds the rank of the Hamming code of the same length at most by 2 is established. Bibliogr. 17.
Keywords: perfect binary code, rank of partition into perfect codes, lower bound on the number of partitions.
Mots-clés : partition of an $n$-cube
@article{DA_2013_20_2_a1,
     author = {G. K. Guskov},
     title = {On partitions of an $n$-cube into perfect binary codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {15--25},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_2_a1/}
}
TY  - JOUR
AU  - G. K. Guskov
TI  - On partitions of an $n$-cube into perfect binary codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 15
EP  - 25
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_2_a1/
LA  - ru
ID  - DA_2013_20_2_a1
ER  - 
%0 Journal Article
%A G. K. Guskov
%T On partitions of an $n$-cube into perfect binary codes
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 15-25
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_2_a1/
%G ru
%F DA_2013_20_2_a1
G. K. Guskov. On partitions of an $n$-cube into perfect binary codes. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 2, pp. 15-25. http://geodesic.mathdoc.fr/item/DA_2013_20_2_a1/