Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2013_20_2_a0, author = {S. V. Goryainov and L. V. Shalaginov}, title = {On {Deza} graphs with parameters of complement graphs to lattice and triangular graphs}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {3--14}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2013_20_2_a0/} }
TY - JOUR AU - S. V. Goryainov AU - L. V. Shalaginov TI - On Deza graphs with parameters of complement graphs to lattice and triangular graphs JO - Diskretnyj analiz i issledovanie operacij PY - 2013 SP - 3 EP - 14 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2013_20_2_a0/ LA - ru ID - DA_2013_20_2_a0 ER -
%0 Journal Article %A S. V. Goryainov %A L. V. Shalaginov %T On Deza graphs with parameters of complement graphs to lattice and triangular graphs %J Diskretnyj analiz i issledovanie operacij %D 2013 %P 3-14 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2013_20_2_a0/ %G ru %F DA_2013_20_2_a0
S. V. Goryainov; L. V. Shalaginov. On Deza graphs with parameters of complement graphs to lattice and triangular graphs. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 2, pp. 3-14. http://geodesic.mathdoc.fr/item/DA_2013_20_2_a0/
[1] Goryainov S. V., Shalaginov L. V., “O grafakh Deza na 14, 15 i 16 vershinakh”, Sib. elektron. mat. izv., 8 (2011), 105–115 | MR
[2] Kabanov V. V., Shalaginov L. V., “O grafakh Deza s parametrami reshëtchatykh grafov”, Tr. IMM UrO RAN, 16, no. 3, 2010, 117–120
[3] Shalaginov L. V., “O grafakh Deza s parametrami treugolnykh grafov”, Tr. IMM UrO RAN, 17, no. 1, 2011, 294–298
[4] Bose R. C., “Strongly regular graphs, partial geometries and partially balanced designs”, Pacific J. Math., 13 (1963), 389–419 | MR | Zbl
[5] Brouwer A. E., Cohen A. M., Neumaier A., Distance regular graphs, Springer-Verl., Berlin, 1989, 495 pp. | MR | Zbl
[6] Chang L. C., “The uniqueness and nonuniqueness of the triangular association scheme”, Sci. Record., 3 (1959), 604–613 | MR | Zbl
[7] Deza M., Deza A., “The ridge graph of the metric polytope and some relatives”, Polytopes: abstract, convex, and computational, NATO ASI Ser., 440, Kluwer Acad., New York, 1994, 359–372 | MR | Zbl
[8] Erickson M., Fernando S., Haemers W. H., Hardy D., Hemmeter J., “Deza graphs: a generalization of strongly regular graphs”, J. Comb. Des., 7 (1999), 359–405 | MR
[9] Higman D. G., “Finite permutations group of rank 3”, Math. Z., 86 (1964), 145–156 | MR | Zbl
[10] Hoffman A. J., “On the uniqueness of the triangular association scheme”, Ann. Math. Stat., 31 (1960), 492–497 | MR | Zbl
[11] Shrikhande S. S., “The uniqueness of the $L_2$ association scheme”, Ann. Math. Stat., 30 (1959), 781–798 | MR | Zbl