Essential dependence of the Kasami bent functions on the products of variables
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 1, pp. 77-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kasami bent functions are the most complicated of the class of monomial bent functions. It is proved that an arbitrary Kasami bent function of degree $t$ has nonzero $(t-2)$-multiple derivatives if $4\leq t\leq(n+3)/3$ and nonzero $(t-3)$-multiple derivatives if $(n+3)/3$. It is obtained that the order of essential dependence of a Kasami bent function is not less than $t-3$. Bibliogr. 8.
Keywords: Kasami Boolean function, bent function, derivative of a Boolean function.
Mots-clés : algebraic normal form
@article{DA_2013_20_1_a6,
     author = {A. A. Frolova},
     title = {Essential dependence of the {Kasami} bent functions on the products of variables},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {77--92},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_1_a6/}
}
TY  - JOUR
AU  - A. A. Frolova
TI  - Essential dependence of the Kasami bent functions on the products of variables
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 77
EP  - 92
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_1_a6/
LA  - ru
ID  - DA_2013_20_1_a6
ER  - 
%0 Journal Article
%A A. A. Frolova
%T Essential dependence of the Kasami bent functions on the products of variables
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 77-92
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_1_a6/
%G ru
%F DA_2013_20_1_a6
A. A. Frolova. Essential dependence of the Kasami bent functions on the products of variables. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 1, pp. 77-92. http://geodesic.mathdoc.fr/item/DA_2013_20_1_a6/

[1] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, Moskovskii tsentr nepreryvnogo matematicheskogo obrazovaniya, M., 2004, 470 pp. | MR | Zbl

[2] Tokareva N. N., Nelineinye bulevy funktsii: bent-funktsii i ikh obobscheniya, LAP LAMBERT Acad. Publ., Saarbrücken, 2011, 180 pp.

[3] Canteaut A., Daum M., Dobbertin H., Leander G., “Finding non-normal bent functions”, Discrete Appl. Math., 154 (2006), 202–218 | DOI | MR | Zbl

[4] Carlet C., “Boolean functions for cryptography and error correcting codes”, Boolean methods and models, Cambridge Univ. Press, Cambridge (to appear) http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf

[5] Dillon J. F., Dobbertin H., “New cyclic difference sets with Singer parameters”, Finite Fields Their Appl., 10 (2004), 342–389 | DOI | MR | Zbl

[6] Langevin P., Leander G., “Monomial bent function and Stickelberger's theorem”, Finite Fields Their Appl., 14 (2008), 727–742 | DOI | MR | Zbl

[7] Langevin P., Leander G., McGuire G., “Kasami bent function are not equivalent to their duals”, Finite Fields Appl., 461 (2008), 187–197 | DOI | MR | Zbl

[8] Sharma D., Gangopadhyay S., On Kasami bent function, Cryptology ePrint Archive, Report 2008/426, 10 pp. http://eprint.iacr.org/2008/426.pdf