Essential dependence of the Kasami bent functions on the products of variables
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 1, pp. 77-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Kasami bent functions are the most complicated of the class of monomial bent functions. It is proved that an arbitrary Kasami bent function of degree $t$ has nonzero $(t-2)$-multiple derivatives if $4\leq t\leq(n+3)/3$ and nonzero $(t-3)$-multiple derivatives if $(n+3)/3. It is obtained that the order of essential dependence of a Kasami bent function is not less than $t-3$. Bibliogr. 8.
Keywords: Kasami Boolean function, bent function, derivative of a Boolean function.
Mots-clés : algebraic normal form
@article{DA_2013_20_1_a6,
     author = {A. A. Frolova},
     title = {Essential dependence of the {Kasami} bent functions on the products of variables},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {77--92},
     year = {2013},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_1_a6/}
}
TY  - JOUR
AU  - A. A. Frolova
TI  - Essential dependence of the Kasami bent functions on the products of variables
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 77
EP  - 92
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_1_a6/
LA  - ru
ID  - DA_2013_20_1_a6
ER  - 
%0 Journal Article
%A A. A. Frolova
%T Essential dependence of the Kasami bent functions on the products of variables
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 77-92
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/DA_2013_20_1_a6/
%G ru
%F DA_2013_20_1_a6
A. A. Frolova. Essential dependence of the Kasami bent functions on the products of variables. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 1, pp. 77-92. http://geodesic.mathdoc.fr/item/DA_2013_20_1_a6/

[1] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, Moskovskii tsentr nepreryvnogo matematicheskogo obrazovaniya, M., 2004, 470 pp. | MR | Zbl

[2] Tokareva N. N., Nelineinye bulevy funktsii: bent-funktsii i ikh obobscheniya, LAP LAMBERT Acad. Publ., Saarbrücken, 2011, 180 pp.

[3] Canteaut A., Daum M., Dobbertin H., Leander G., “Finding non-normal bent functions”, Discrete Appl. Math., 154 (2006), 202–218 | DOI | MR | Zbl

[4] Carlet C., “Boolean functions for cryptography and error correcting codes”, Boolean methods and models, Cambridge Univ. Press, Cambridge (to appear) http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf

[5] Dillon J. F., Dobbertin H., “New cyclic difference sets with Singer parameters”, Finite Fields Their Appl., 10 (2004), 342–389 | DOI | MR | Zbl

[6] Langevin P., Leander G., “Monomial bent function and Stickelberger's theorem”, Finite Fields Their Appl., 14 (2008), 727–742 | DOI | MR | Zbl

[7] Langevin P., Leander G., McGuire G., “Kasami bent function are not equivalent to their duals”, Finite Fields Appl., 461 (2008), 187–197 | DOI | MR | Zbl

[8] Sharma D., Gangopadhyay S., On Kasami bent function, Cryptology ePrint Archive, Report 2008/426, 10 pp. http://eprint.iacr.org/2008/426.pdf