Essential dependence of the Kasami bent functions on the products of variables
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 1, pp. 77-92
Voir la notice de l'article provenant de la source Math-Net.Ru
The Kasami bent functions are the most complicated of the class of monomial bent functions. It is proved that an arbitrary Kasami bent function of degree $t$ has nonzero $(t-2)$-multiple derivatives if $4\leq t\leq(n+3)/3$ and nonzero $(t-3)$-multiple derivatives if $(n+3)/3$. It is obtained that the order of essential dependence of a Kasami bent function is not less than $t-3$. Bibliogr. 8.
Keywords:
Kasami Boolean function, bent function, derivative of a Boolean function.
Mots-clés : algebraic normal form
Mots-clés : algebraic normal form
@article{DA_2013_20_1_a6,
author = {A. A. Frolova},
title = {Essential dependence of the {Kasami} bent functions on the products of variables},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {77--92},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2013_20_1_a6/}
}
TY - JOUR AU - A. A. Frolova TI - Essential dependence of the Kasami bent functions on the products of variables JO - Diskretnyj analiz i issledovanie operacij PY - 2013 SP - 77 EP - 92 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2013_20_1_a6/ LA - ru ID - DA_2013_20_1_a6 ER -
A. A. Frolova. Essential dependence of the Kasami bent functions on the products of variables. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 1, pp. 77-92. http://geodesic.mathdoc.fr/item/DA_2013_20_1_a6/