Majorants and minorants in the graph class with given number of vertices and diameter
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 1, pp. 58-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

Majorants (minorants), i.e., extremal graphs such that for any $i\ge0$ exact upper (lower) estimates for the number of different balls of the radius $i$ are attained at, are studied in the class of the $n$-vertex graphs with diameter $d$. For all parameters $n$ and $d$, the minorants are described explicitly. It is found out when the majorants exist in the class of $n$-vertex graphs with diameter $d$, and the corresponding extremal graphs are described. Il. 9, bibliogr. 8.
Keywords: graph, metric ball, radius of the ball, the number of balls, estimate of the number of balls, extremal graph.
@article{DA_2013_20_1_a5,
     author = {T. I. Fedoryaeva},
     title = {Majorants and minorants in the graph class with given number of vertices and diameter},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {58--76},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_1_a5/}
}
TY  - JOUR
AU  - T. I. Fedoryaeva
TI  - Majorants and minorants in the graph class with given number of vertices and diameter
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 58
EP  - 76
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_1_a5/
LA  - ru
ID  - DA_2013_20_1_a5
ER  - 
%0 Journal Article
%A T. I. Fedoryaeva
%T Majorants and minorants in the graph class with given number of vertices and diameter
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 58-76
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_1_a5/
%G ru
%F DA_2013_20_1_a5
T. I. Fedoryaeva. Majorants and minorants in the graph class with given number of vertices and diameter. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 1, pp. 58-76. http://geodesic.mathdoc.fr/item/DA_2013_20_1_a5/

[1] Evdokimov A. A., “Lokalno izometricheskie vlozheniya grafov i svoistvo prodolzheniya metriki”, Sib. zhurn. issled. operatsii, 1:1 (1994), 5–12 | MR | Zbl

[2] Fedoryaeva T. I., “O raznoobrazii metricheskikh sharov v grafakh”, Problemy teoreticheskoi kibernetiki, Tez. dokl. XIV Mezhdunar. konf. (Penza, 23–28 maya 2005 g.), Izd-vo mekh.-mat. fak-ta MGU, M., 2005, 159

[3] Fedoryaeva T. I., “Raznoobrazie sharov v metricheskikh prostranstvakh derevev”, Diskret. analiz i issled. operatsii. Ser. 1, 12:3 (2005), 74–84 | MR | Zbl

[4] Fedoryaeva T. I., “Vektory raznoobraziya sharov i svoistva ikh komponent”, Tr. VII Mezhdunar. konf. “Diskretnye modeli v teorii upravlyayuschikh sistem” (Moskva, 4–6 marta 2006 g.), Izd-vo MGU, M., 2006, 374–378

[5] Fedoryaeva T. I., “Vektory raznoobraziya sharov dlya grafov i otsenki ikh komponent”, Diskret. analiz i issled. operatsii. Ser. 1, 14:2 (2007), 47–67 | MR | Zbl

[6] Fedoryaeva T. I., “Tochnye verkhnie otsenki chisla razlichnykh sharov zadannogo radiusa v grafakh s fiksirovannymi chislom vershin i diametrom”, Diskret. analiz i issled. operatsii, 16:6 (2009), 74–92 | MR | Zbl

[7] Fedoryaeva T. I., “O grafakh s zadannymi diametrom, chislom vershin i lokalnym raznoobraziem sharov”, Diskret. analiz i issled. operatsii, 17:1 (2010), 65–74 | MR | Zbl

[8] Kharari F., Teoriya grafov, Mir, M., 1973, 300 pp. | MR