The pricing problem. Part~2. The computational complexity
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 6, pp. 56-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the problem, it is shown that it belongs to the class Log-APX, cannot be approximable with an absolute error limited by a constant, and the corresponding evaluation problem is non-trivial in the class $\Delta^p_2$. Also, two polynomial solvable cases of the problem are provided. Bibliogr. 8.
Keywords: computational complexity, approximability, the bilevel pricing problem, approximate algorithm, approximability class, NP-hard in the strong sense, polynomial hierarchy.
@article{DA_2012_19_6_a5,
     author = {A. V. Plyasunov and A. A. Panin},
     title = {The pricing problem. {Part~2.} {The} computational complexity},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {56--71},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2012_19_6_a5/}
}
TY  - JOUR
AU  - A. V. Plyasunov
AU  - A. A. Panin
TI  - The pricing problem. Part~2. The computational complexity
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2012
SP  - 56
EP  - 71
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2012_19_6_a5/
LA  - ru
ID  - DA_2012_19_6_a5
ER  - 
%0 Journal Article
%A A. V. Plyasunov
%A A. A. Panin
%T The pricing problem. Part~2. The computational complexity
%J Diskretnyj analiz i issledovanie operacij
%D 2012
%P 56-71
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2012_19_6_a5/
%G ru
%F DA_2012_19_6_a5
A. V. Plyasunov; A. A. Panin. The pricing problem. Part~2. The computational complexity. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 6, pp. 56-71. http://geodesic.mathdoc.fr/item/DA_2012_19_6_a5/

[1] Panin A. A., Plyasunov A. V., “Zadacha tsenoobrazovaniya. Chast 1: tochnye i priblizhënnye algoritmy resheniya”, Diskret. analiz i issled. operatsii, 19:5 (2012), 83–100

[2] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp. | MR

[3] Skhreiver A., Teoriya lineinogo i tselochislennogo programmirovaniya, v. 1, Mir, M., 1991, 360 pp. | MR

[4] Attallah M., Algorithms and theory of computation handbook, CRC Press LLC, Boca Raton, 1999, 1312 pp. | MR

[5] Ausiello G., Crescenzi P., Gambosi G., Kann V., Marchetti-Spaccamela A., Protasi M., Complexity and approximation: combinatorial optimization problems and their aproximability properties, Springer-Verl., Berlin, 1999, 524 pp. | MR | Zbl

[6] Dempe S. J., Foundations of bilevel programming, Kluwer Acad. Publ., Dordrecht, 2002, 320 pp. | MR | Zbl

[7] Hanjoul P., Hansen P., Peeters D., Thisse J.-F., “Uncapacitated plant location under alternative spatial price policies”, Management Sci., 36 (1990), 41–57 | MR | Zbl

[8] Leggette E. W. (Jr.), Moore D. J., “Optimization problems and the polynomial hierarchy”, Theor. Comput. Sci., 15:3 (1981), 279–289 | DOI | MR