The Shannon function of computation of the Arnold complexity of length $2^n$ binary words
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 6, pp. 49-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for the fast computation of the Arnold complexity of length $2^n$ binary words has been recently proposed by the author. Based on this method, an exact value of the Shannon function is obtained for almost all $n$. Bibliogr. 5.
Keywords: binary word, word complexity, Arnold complexity, Shannon function.
@article{DA_2012_19_6_a4,
     author = {Yu. V. Merekin},
     title = {The {Shannon} function of computation of the {Arnold} complexity of length $2^n$ binary words},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {49--55},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2012_19_6_a4/}
}
TY  - JOUR
AU  - Yu. V. Merekin
TI  - The Shannon function of computation of the Arnold complexity of length $2^n$ binary words
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2012
SP  - 49
EP  - 55
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2012_19_6_a4/
LA  - ru
ID  - DA_2012_19_6_a4
ER  - 
%0 Journal Article
%A Yu. V. Merekin
%T The Shannon function of computation of the Arnold complexity of length $2^n$ binary words
%J Diskretnyj analiz i issledovanie operacij
%D 2012
%P 49-55
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2012_19_6_a4/
%G ru
%F DA_2012_19_6_a4
Yu. V. Merekin. The Shannon function of computation of the Arnold complexity of length $2^n$ binary words. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 6, pp. 49-55. http://geodesic.mathdoc.fr/item/DA_2012_19_6_a4/

[1] Arnold V. I., “Topologiya i statistika formul arifmetiki”, Uspekhi mat. nauk, 58:4 (2003), 3–28 | DOI | MR | Zbl

[2] Merekin Yu. V., “O vychislenii slozhnosti po Arnoldu dvoichnykh slov”, Mat. XVI Mezhdunar. konf. “Problemy teoreticheskoi kibernetiki” (Nizhnii Novgorod, 20–25 iyunya 2011 g.), Izd-vo Nizhegorodsk. gos. un-ta, Nizhnii Novgorod, 2011, 315–319

[3] Merekin Yu. V., “On the computational complexity of the Arnold complexity of binary words”, Asian-Eur. J. Math., 2:4 (2009), 649–656 | MR | Zbl

[4] Merekin Yu. V., “On the computation of Arnold complexity of length $2^n$ binary words”, Asian-Eur. J. Math., 4:2 (2011), 295–300 | DOI | MR | Zbl

[5] Merekin Yu. V., Fast computation of the Arnold complexity of length $2^n$ binary words, ArXive e-print, 2012, arXiv: 1209.4700[math.CO]