Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2012_19_5_a4, author = {P. A. Kononova and Yu. A. Kochetov}, title = {Variable neighborhood search for two machine flowshop problem with a~passive prefetch}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {63--82}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2012_19_5_a4/} }
TY - JOUR AU - P. A. Kononova AU - Yu. A. Kochetov TI - Variable neighborhood search for two machine flowshop problem with a~passive prefetch JO - Diskretnyj analiz i issledovanie operacij PY - 2012 SP - 63 EP - 82 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2012_19_5_a4/ LA - ru ID - DA_2012_19_5_a4 ER -
%0 Journal Article %A P. A. Kononova %A Yu. A. Kochetov %T Variable neighborhood search for two machine flowshop problem with a~passive prefetch %J Diskretnyj analiz i issledovanie operacij %D 2012 %P 63-82 %V 19 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2012_19_5_a4/ %G ru %F DA_2012_19_5_a4
P. A. Kononova; Yu. A. Kochetov. Variable neighborhood search for two machine flowshop problem with a~passive prefetch. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 5, pp. 63-82. http://geodesic.mathdoc.fr/item/DA_2012_19_5_a4/
[1] Kononova P. A., “Nizhnie i verkhnie otsenki dliny optimalnogo raspisaniya prezentatsii media-ob'ektov”, Diskret. analiz i issled. operatsii, 19:1 (2012), 59–73 | MR
[2] Kochetov Yu. A., Mladenovich N., Khansen P., “Lokalnyi poisk s chereduyuschimisya okrestnostyami”, Diskret. analiz i issled. operatsii. Ser. 2, 10:1 (2003), 11–43 | MR | Zbl
[3] Brimberg J., Hansen P., Mladenović N., Convergence of variable neighborhood search, Les Cahiers du GERAD G–2000–73, Montreal, Canada, 2000
[4] Croce F. D., Grosso A., Salassa F., “A matheuristic approach for the total completion time two-machines permutation flow shop problem”, Lect. Notes Comput. Sci., 6622, 2011, 38–47 | DOI
[5] Falkenauer E., “A hybrid grouping genetic algorithm for bin packing”, J. Heuristics, 2:1 (1996), 5–30 | DOI | MR
[6] Ierapetritou M. G., Floudas C. A., “Effective continuous-time formulation for shortterm scheduling: I. Multipurpose batch process”, Ind. Eng. Chem. Res., 37 (1998), 4341–4359 | DOI
[7] Johnson S. M., “Optimal two- and three-stage production scheduling with setup time included”, Naval Res. Logist., 1 (1954), 61–68 | DOI
[8] Kochetov Yu., Alekseeva E., Levanova T., Loresh M., “Large neighborhood local search for the $p$-median problem”, Yugosl. J. Oper. Res., 15:1 (2005), 53–63 | DOI | MR
[9] Kochetov Yu., Kononova P., Paschenko M., “Formulation space search approach for the teacher/class timetabling problem”, Yugosl. J. Oper. Res., 18:1 (2008), 1–11 | DOI | MR | Zbl
[10] Kononov A., Kononova P., Hong J.-S., “Two-stage multimedia scheduling problem with an active prefetch model”, Preprints of the 13th IFAC Symp. Information Control Problems in Manufacturing (Moscow, Russia, June 3–5, 2009), Trapeznikov Institute of Control Sciences, Moscow, 2009, 1997–2002
[11] Kononov A., Hong J.-S., Kononova P., Lin F.-C., “Quantity-based buffer-constrained two machine flowshop problem: active and passive prefetch models for multimedia applications”, J. Sched., 15:4 (2012), 487–497 | DOI | MR
[12] Lin F.-C., Hong J.-S., Lin B. M. T., “A two-machine flow shop problem with processing time-dependent buffer constraints – an application in multimedia problem”, Comput. Oper. Res., 36:4 (2009), 1158–1175 | DOI | Zbl
[13] Sevastianov S., Lin B. M. T., “Efficient enumeration of optimal and approximate solutions of the two-machine flow-shop problem”, Preprint of 10th Workshop on Models and Algorithms for Planning and Scheduling Problems (Nymburk, Czech Republic, July 19–24, 2007), Institute for Theoretical Computer Science (ITI) Charles University, Praha, 2011, 177–179