Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2012_19_5_a2, author = {N. Yu. Zolotykh and A. Yu. Chirkov}, title = {On an upper bound for the cardinality of a~minimal teaching set of a~threshold function}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {35--46}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2012_19_5_a2/} }
TY - JOUR AU - N. Yu. Zolotykh AU - A. Yu. Chirkov TI - On an upper bound for the cardinality of a~minimal teaching set of a~threshold function JO - Diskretnyj analiz i issledovanie operacij PY - 2012 SP - 35 EP - 46 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2012_19_5_a2/ LA - ru ID - DA_2012_19_5_a2 ER -
%0 Journal Article %A N. Yu. Zolotykh %A A. Yu. Chirkov %T On an upper bound for the cardinality of a~minimal teaching set of a~threshold function %J Diskretnyj analiz i issledovanie operacij %D 2012 %P 35-46 %V 19 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2012_19_5_a2/ %G ru %F DA_2012_19_5_a2
N. Yu. Zolotykh; A. Yu. Chirkov. On an upper bound for the cardinality of a~minimal teaching set of a~threshold function. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 5, pp. 35-46. http://geodesic.mathdoc.fr/item/DA_2012_19_5_a2/
[1] Veselov S. I., Chirkov A. Yu., “Otsenki chisla vershin tselykh poliedrov”, Diskret. analiz i issled. operatsii. Ser. 2, 14:2 (2007), 14–31 | MR | Zbl
[2] Virovlyanskaya M. A., Zolotykh N. Yu., “Verkhnyaya otsenka srednei moschnosti minimalnogo razreshayuschego mnozhestva porogovoi funktsii mnogoznachnoi logiki”, Vestn. Nizhegorodsk. gos. un-ta im. N. I. Lobachevskogoyu Matematicheskoe modelirovanie i optimalnoe upravlenie, 2003, no. 1, 238–246
[3] Virovlyanskaya M. A., Zolotykh N. Yu., “O moschnosti razreshayuschego mnozhestva porogovoi funktsii mnogoznachnoi logiki”, Mat. XIV Mezhdunar. shk.-seminara “Sintez i slozhnost upravlyayuschikh sistem”, Izd-vo Nizhegorodsk. gos. ped. un-ta, N. Novgorod, 2003, 20–21
[4] Zolotykh N. Yu., “O slozhnosti rasshifrovki porogovykh funktsii, zavisyaschikh ot dvukh peremennykh”, Mat. XI Mezhgos. shk.-seminara “Sintez i slozhnost upravlyayuschikh sistem”, Ch. I, Izd-vo Tsentra prikl. issled. pri mekh.-mat. fak. MGU, M., 2001, 74–79
[5] Zolotykh N. Yu., “Otsenki moschnosti minimalnogo razreshayuschego mnozhestva porogovoi funktsii mnogoznachnoi logiki”, Matematicheskie voprosy kibernetiki, 17, Fizmatlit, M., 2008, 159–168
[6] Zolotykh N. Yu., “Novaya modifikatsiya metoda dvoinogo opisaniya dlya postroeniya ostova mnogogrannogo konusa”, Zhurn. vychisl. matematiki i mat. fiziki, 52:1 (2012), 153–163 | MR | Zbl
[7] Zolotykh N. Yu., Shevchenko V. N., “Rasshifrovka porogovykh funktsii $k$-znachnoi logiki”, Diskret. analiz i issled. operatsii, 2:3 (1995), 18–23 | MR | Zbl
[8] Zolotykh N. Yu., Shevchenko V. N., “O nizhnei otsenke rasshifrovki porogovykh funktsii $k$-znachnoi logiki”, Zhurn. vychisl. matematiki i mat. fiziki, 39:2 (1999), 346–352 | MR | Zbl
[9] Skhreiver A., Teoriya lineinogo i tselochislennogo programmirovaniya, Mir, M., 1991, 360 pp. | MR
[10] Shevchenko V. N., “O chisle krainikh tochek v tselochislennom programmirovanii”, Kibernetika, 1981, no. 2, 133–134 | Zbl
[11] Shevchenko V. N., “O nekotorykh funktsiyakh mnogoznachnoi logiki, svyazannykh s tselochislennym programmirovaniem”, Metody diskretnogo analiza v teorii grafov i skhem, 42, In-t matematiki SO AN SSSR, Novosibirsk, 1985, 99–108 | MR
[12] Shevchenko V. N., Kachestvennye voprosy tselochislennogo programmirovaniya, Fizmatlit, M., 1995, 192 pp. | MR | Zbl
[13] Shevchenko V. N., Zolotykh N. Yu., “O slozhnosti rasshifrovki porogovykh funktsii $k$-znachnoi logiki”, Dokl. RAN, 362:5 (1998), 606–608 | MR | Zbl
[14] Antony M., Brightwell G., Shawe-Taylor J., “On exact specification by labeled examples”, Discrete Appl. Math., 61:1 (1995), 1–25 | DOI | MR
[15] Cook W., Hartmann M., Kannan R., McDiarmid C., “On integer points in polyhedra”, Combinatorica, 12:1 (1992), 27–37 | DOI | MR | Zbl
[16] Hegedüs T., “Geometrical concept learning and convex polytopes”, Proc. 7th Ann. ACM Conf. Computational Learning Theory (COLT' 94), ACM Press, New York, 1994, 228–236 | MR
[17] Hegedüs T., “Generalized teaching dimensions and the query complexity of learning”, Proc. 8th Ann. ACM Conf. Computational Learning Theory (COLT' 95), ACM Press, New York, 1995, 108–117