A formula for the number of labeled connected graphs
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 48-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new formula for the number of labeled connected graphs in terms of the generating function of their blocks. We apply this formula to cacti and outer-planar graphs. Bibliogr. 13.
Keywords: enumeration, connected graph, block, outer-planar graph.
Mots-clés : cactus
@article{DA_2012_19_4_a3,
     author = {V. A. Voblyi},
     title = {A formula for the number of labeled connected graphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {48--59},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2012_19_4_a3/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - A formula for the number of labeled connected graphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2012
SP  - 48
EP  - 59
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2012_19_4_a3/
LA  - ru
ID  - DA_2012_19_4_a3
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T A formula for the number of labeled connected graphs
%J Diskretnyj analiz i issledovanie operacij
%D 2012
%P 48-59
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2012_19_4_a3/
%G ru
%F DA_2012_19_4_a3
V. A. Voblyi. A formula for the number of labeled connected graphs. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 48-59. http://geodesic.mathdoc.fr/item/DA_2012_19_4_a3/

[1] Voblyi V. A., “O perechislenii pomechennykh svyaznykh grafov po chislu tochek sochleneniya”, Diskret. matematika, 20:1 (2008), 52–63 | MR | Zbl

[2] Gulden Ya., Dzhekson D., Perechislitelnaya kombinatorika, Nauka, GRFML, M., 1990, 504 pp. | MR

[3] Prudnikov A. P. i dr., Integraly i ryady, v. 1, Nauka, GRFML, M., 1981, 800 pp. | MR | Zbl

[4] Kharari F., Teoriya grafov, Mir, M., 1973, 300 pp. | MR

[5] Kharari F., Palmer E., Perechislenie grafov, Mir, M., 1977, 324 pp. | MR

[6] Bodirsky M., Gimenez O., Kang M., Noy M., “Enumeration and limit laws of series-parallel graphs”, Eur. J. Comb., 28 (2007), 2091–2105 | DOI | MR | Zbl

[7] Bona M., Bousqet M., Labelle M., Leroux P., “Enumeration of $m$-ary cacti”, Adv. Appl. Math., 24 (2000), 22–56 | DOI | MR | Zbl

[8] Flajolet Ph., Sedgewick R., Analytic combinatorics, Cambridge Univ. Press, Cambridge, 2009, 810 pp. | MR | Zbl

[9] Ford G. W., Uhlenbeck G. E., “Combinatorial problems in theory graphs. I”, Proc. Natl. Acad. Sci. USA, 42 (1956), 122–128 | DOI | MR | Zbl

[10] Ford G. W., Uhlenbeck G. E., “Combinatorial problems in theory graphs. III”, Proc. Natl. Acad. Sci. USA, 42 (1956), 529–535 | DOI | MR | Zbl

[11] Leroux P., “Enumerative problems inspired by Mayer's theory of cluster integrals”, Electron. J. Comb., 11 (2004), R32 | MR | Zbl

[12] Moon J., Counting labelled trees, Can. Math. Congress, Montreal, 1970, 110 pp. | MR | Zbl

[13] The on-line encyclopedia of integer sequences, http://oeis.org/