Multicoloring of incidentors of weighted undirected multigraph
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 35-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Undirected multigraphs with weighted edges are considered. In multicoloring of incidentors, every incidentor should be assigned with a multicolor, i.e. an interval of colors whose length is equal to the weight of the incidentor. A multicoloring is proper if the multicolors of any two adjacent or junction incidentors do not intersect. Upper and lower bounds for the minimum number of colors necessary for a proper multicoloring of all incidentors of a multigraph are presented. Ill. 1, bibliogr. 10.
Keywords: incidentor, multicoloring, incidentor multichromatic number.
@article{DA_2012_19_4_a2,
     author = {V. G. Vizing},
     title = {Multicoloring of incidentors of weighted undirected multigraph},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2012_19_4_a2/}
}
TY  - JOUR
AU  - V. G. Vizing
TI  - Multicoloring of incidentors of weighted undirected multigraph
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2012
SP  - 35
EP  - 47
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2012_19_4_a2/
LA  - ru
ID  - DA_2012_19_4_a2
ER  - 
%0 Journal Article
%A V. G. Vizing
%T Multicoloring of incidentors of weighted undirected multigraph
%J Diskretnyj analiz i issledovanie operacij
%D 2012
%P 35-47
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2012_19_4_a2/
%G ru
%F DA_2012_19_4_a2
V. G. Vizing. Multicoloring of incidentors of weighted undirected multigraph. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 35-47. http://geodesic.mathdoc.fr/item/DA_2012_19_4_a2/

[1] Aksënov V. A., “Stepen sovershenstva grafa”, Metody diskretnogo analiza v izuchenii realizatsii logicheskikh funktsii, Sb. tr. In-ta matematiki SO AN SSSR, 41, 1984, 3–11 | MR | Zbl

[2] Aksënov V. A., “Obobschenie nekotorykh otsenok khromaticheskogo chisla grafov”, 30th Int. Wiss. Koll. TH., Vortragsreihe, Ilmenau, 1985, 3–5

[3] Aksënov V. A., “Polinomialnyi algoritm dlya priblizhënnogo rsheniya odnoi zadachi teorii raspisanii”, 33th Int. Wiss. Koll. TH., Vortragsreihe, Ilmenau, 1988, 143–145

[4] Vizing V. G., “O multiraskraske vershin vzveshennykh grafov”, Diskret. analiz i issled. operatsii. Ser. 1, 14:4 (2007), 16–26 | MR | Zbl

[5] Vizing V. G., “Ob odnom obobschenii zadachi raskraski rëber multigrafa”, Dokl. Odessk. seminara po diskret. matematike, 2007, no. 5, 4–6

[6] Vizing V. G., Pyatkin A. V., “Ob otsenkakh intsidentornogo khromaticheskogo chisla vzveshennogo neorientirovannogo multigrafa”, Diskret. analiz i issled. operatsii. Ser. 1, 14:2 (2007), 3–15 | MR | Zbl

[7] Vizing V. G., Toft B., “Raskraska intsidentorov i vershin neorientirovannogo multigrafa”, Diskret. analiz i issled. operatsii. Ser. 1, 8:3 (2001), 3–14 | MR | Zbl

[8] Zykov V. A., Osnovy teorii grafov, Vuzovsk. kn., M., 2004, 663 pp.

[9] Pyatkin A. V., “Nekotorye zadachi optimizatsii raspisaniya peredachi soobschenii v lokalnoi seti svyazi”, Diskret. analiz i issled. operatsii. Ser. 1, 2:4 (1995), 74–79 | MR | Zbl

[10] Golumbic M. C., Algorithmic graph theory and perfect graphs, Acad. Press, New York–London, 1980, 303 pp. | MR | Zbl