On existence of Walras equilibrium in a~multi-regional economic model
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 15-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a general Walras equilibrium existence theorem is established for a class of multi-regional economic systems. In contrast to the earlier announced rather technical existence result, we propose quite simple assumptions consisting of the absence of cornucopia and strong regional autarchy requirements. It is worth to note that strong autarchy requirement is a modification of the well-known positive initial endowment assumption. Alongside with the existence result obtained, strong attention is paid to the comparative analysis of the core, Walras, and Edgeworth equilibria of multi-regional models under consideration. Bibliogr. 14.
Keywords: multi-regional interaction model, Walras equilibrium, $k$-splitting, Edgeworth equilibrium.
Mots-clés : core
@article{DA_2012_19_4_a1,
     author = {V. A. Vasil'ev},
     title = {On existence of {Walras} equilibrium in a~multi-regional economic model},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {15--34},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2012_19_4_a1/}
}
TY  - JOUR
AU  - V. A. Vasil'ev
TI  - On existence of Walras equilibrium in a~multi-regional economic model
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2012
SP  - 15
EP  - 34
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2012_19_4_a1/
LA  - ru
ID  - DA_2012_19_4_a1
ER  - 
%0 Journal Article
%A V. A. Vasil'ev
%T On existence of Walras equilibrium in a~multi-regional economic model
%J Diskretnyj analiz i issledovanie operacij
%D 2012
%P 15-34
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2012_19_4_a1/
%G ru
%F DA_2012_19_4_a1
V. A. Vasil'ev. On existence of Walras equilibrium in a~multi-regional economic model. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 15-34. http://geodesic.mathdoc.fr/item/DA_2012_19_4_a1/

[1] Aliprantis K., Braun D., Bërkensho O., Suschestvovanie i optimalnost konkurentnogo ravnovesiya, Mir, M., 1995, 384 pp.

[2] Ashmanov S. A., Vvedenie v matematicheskuyu ekonomiku, Nauka, M., 1984, 296 pp. | MR | Zbl

[3] Vasilev V. A., Modeli ekonomicheskogo obmena i kooperativnye igry, Izd-vo NGU, Novosibirsk, 1984, 96 pp.

[4] Vasilev V. A., Suslov V. I., “O neblokiruemykh sostoyaniyakh mnogoregionalnykh ekonomicheskikh sistem”, Sib. zhurn. industr. matematiki, 12:4 (2009), 23–34 | MR

[5] Vasilev V. A., Suslov V. I., “Ravnovesie Edzhvorta v odnoi modeli mezhregionalnykh ekonomicheskikh otnoshenii”, Sib. zhurn. industr. matematiki, 13:1 (2010), 18–33 | MR

[6] Gildenbrand V., Yadro i ravnovesie v bolshoi ekonomike, Nauka, M., 1986, 200 pp. | MR

[7] Goldman A. Dzh., “Teoremy razlozheniya i otdelimosti dlya mnogogrannykh vypuklykh mnozhestv”, Lineinye neravenstva i smezhnye voprosy, IL, M., 1959, 162–171

[8] Granberg A. G., Suslov V. I., Suspitsyn S. A., Mnogoregionalnye sistemy: ekonomiko-matematicheskoe issledovanie, Nauka, Novosibirsk, 2007, 371 pp.

[9] Nikaido Kh., Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972, 520 pp.

[10] Rokafellar T., Vypuklyi analiz, Mir, M., 1973, 471 pp.

[11] Rubinshtein A. G., Modelirovanie ekonomicheskikh vzaimodeistvii v territorialnykh sistemakh, Nauka, Novosibirsk, 1983, 240 pp.

[12] Gale D., “The law of supply and demand”, Math. Scand., 3 (1955), 155–169 | MR | Zbl

[13] Hildenbrand W., Kirman A. P., Equilibrium Analysis, North-Holland, Amsterdam, 1991, 297 pp. | MR | Zbl

[14] Vasil'ev V. A., “On Edgeworth equilibria for some types of nonclassic markets”, Sib. Adv. Math., 6:3 (1996), 96–150 | MR