Preemptive routing open shop on a~link
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 3, pp. 65-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

Preemptive routing open shop problem is a generalization of two classic discrete optimization problems: NP-hard metric TSP and polynomially solvable open shop scheduling problem. We show that the problem with two machines is polynomially solvable while in case when the number of machines is a part of an input the problem is strongly NP-hard. Ill. 6, bibliogr. 6.
Keywords: routing open shop, preemption, NP-completeness.
@article{DA_2012_19_3_a5,
     author = {A. V. Pyatkin and I. D. Chernykh},
     title = {Preemptive routing open shop on a~link},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {65--78},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2012_19_3_a5/}
}
TY  - JOUR
AU  - A. V. Pyatkin
AU  - I. D. Chernykh
TI  - Preemptive routing open shop on a~link
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2012
SP  - 65
EP  - 78
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2012_19_3_a5/
LA  - ru
ID  - DA_2012_19_3_a5
ER  - 
%0 Journal Article
%A A. V. Pyatkin
%A I. D. Chernykh
%T Preemptive routing open shop on a~link
%J Diskretnyj analiz i issledovanie operacij
%D 2012
%P 65-78
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2012_19_3_a5/
%G ru
%F DA_2012_19_3_a5
A. V. Pyatkin; I. D. Chernykh. Preemptive routing open shop on a~link. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 3, pp. 65-78. http://geodesic.mathdoc.fr/item/DA_2012_19_3_a5/

[1] Averbakh I., Berman O., Chernykh I., “A $\frac65$-approximation algorithm for the two-machine routing open-shop problem on a 2-node network”, Eur. J. Oper. Res., 166:1 (2005), 3–24 | DOI | MR | Zbl

[2] Averbakh I., Berman O., Chernykh I., “The routing open-shop problem on a network: complexity and approximation”, Eur. J. Oper. Res., 173:2 (2006), 531–539 | DOI | MR | Zbl

[3] Chernykh I., Dryuck N., Kononov A., Sevastyanov S., “The routing open shop problem: new approximation algorithms”, Approximation and online algorithms, 7th Int. Workshop WAOA 2009 (Copenhagen, Denmark, September 10–11, 2009), Revised Papers, Lect. Notes Comput. Sci., 5893, Springer-Verl., Berlin, 2010, 75–85 | DOI | MR | Zbl

[4] Gonzalez T., Sahni S., “Open shop scheduling to minimize finish time”, J. ACM, 23:4 (1976), 665–679 | DOI | MR | Zbl

[5] Lawler E. L., Lenstra J. K., Rinnooy Kan A. H. G., Shmoys D. B., “Sequencing and scheduling: algorithms and complexity”, Logistics of production and inventory, Handb. Oper. Res. Manag., 4, Elsevier, Amsterdam, 1993, 445–522 | DOI

[6] Williamson D. P., Hall L. A., Hoogeveen J. A., Hurkens C. A. J., Lenstra J. K., Sevastianov S.V., Shmoys D. B., “Short shop schedules”, Oper. Res., 45:2 (1997), 288–294 | DOI | MR | Zbl