Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2012_19_2_a3, author = {A. V. Kononov}, title = {On a two-machine routing open shop problem on a~two-node network}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {54--74}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2012_19_2_a3/} }
A. V. Kononov. On a two-machine routing open shop problem on a~two-node network. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 2, pp. 54-74. http://geodesic.mathdoc.fr/item/DA_2012_19_2_a3/
[1] Tanaev V. S., Sotskov Yu. N., Strusevich V. A., Teoriya raspisanii. Mnogostadiinye sistemy, Nauka, M., 1989, 329 pp. | MR | Zbl
[2] Averbakh I., Berman O., Chernykh I., “A $\frac 65$-approximation algorithm for the two-machine routing open shop problem on a 2-node network”, Eur. J. Oper. Res., 166:1 (2005), 3–24 | DOI | MR | Zbl
[3] Averbakh I., Berman O., Chernykh I., “The routing open-shop problem on a network: complexity and approximation”, Eur. J. Oper. Res., 173:2 (2006), 521–539 | DOI | MR
[4] Chernykh I., Dryuck N., Kononov A., Sevastyanov S., “The routing open shop problem: new approximation algorithms”, Approximation and Online algorithms, 7th Int. Workshop WAOA 2009 (Copenhagen, Denmark, September 10–11, 2009), Revised Papers, Lect. Notes Comp. Sci., 5893, Springer-Verl., Heidelberg, 2010, 75–85 | DOI | MR | Zbl
[5] Gonzalez T., Sahni S., “Open shop scheduling to minimize finish time”, J. ACM, 23 (1976), 665–679 | DOI | MR | Zbl
[6] Ibarra O., Kim C. E., “Fast approximation algorithms for the knapsack and sum of subset problems”, J. ACM, 22 (1975), 463–468 | DOI | MR | Zbl
[7] Johnson S. M., “Optimal two- and three stage production schedules with set-up times included”, Naval Res. Logistic Quaterly, 1 (1954), 61–68 | DOI
[8] Schuurman P., Woeginger G., Approximation schemes – a tutorial http://www.win.tue.nl/~gwoegi/papers/ptas.pdf