About the reliability of nonbranching programs in the basis of a generalized conjunction
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 1, pp. 33-40
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of synthesis of nonbranching programs with conditional stop-operator is considered in a full finite basis which contains functions of the form $x_1\cdot x_2$, $\overline x_1\cdot x_2$ or $\overline x_1\cdot\overline x_2$. All functional operators are supposed to be prone to output inverse failures with probability $\varepsilon\in(0,1/2)$ and conditional stop-operators are absolutely reliable. Any Boolean function is proved to be realized by a nonbranching program with unreliability no more then $\varepsilon+59\varepsilon^2$ at $\varepsilon\in(0,1/960]$. Ill. 1, bibliogr. 4.
Keywords:
Boolean function, nonbranching program, conditional stop-operator, synthesis, reliability.
@article{DA_2012_19_1_a2,
author = {S. M. Grabovskaya},
title = {About the reliability of nonbranching programs in the basis of a~generalized conjunction},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {33--40},
year = {2012},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2012_19_1_a2/}
}
TY - JOUR AU - S. M. Grabovskaya TI - About the reliability of nonbranching programs in the basis of a generalized conjunction JO - Diskretnyj analiz i issledovanie operacij PY - 2012 SP - 33 EP - 40 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/DA_2012_19_1_a2/ LA - ru ID - DA_2012_19_1_a2 ER -
S. M. Grabovskaya. About the reliability of nonbranching programs in the basis of a generalized conjunction. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 1, pp. 33-40. http://geodesic.mathdoc.fr/item/DA_2012_19_1_a2/
[1] Alekhina M. A., Vasin A. V., “O nadëzhnosti skhem v bazisakh, soderzhaschikh funktsii ne bolee chem trëkh peremennykh”, Uch. zapiski Kazanskogo gos. un-ta. Ser. Fiz.-mat. nauki, 151, no. 2, Izd-vo Kazansk. un-ta, Kazan, 2009, 25–35
[2] Vasin A. V., Asimptoticheski optimalnye po nadëzhnosti skhemy v polnykh bazisakh iz trëkhvkhodovykh elementov, Diss. $\dots$ kand. fiz.-mat. nauk, Penzenskii gos. un-t, Penza, 2010, 100 pp.
[3] Vasin A. V., “Ob asimptoticheski optimalnykh skhemakh v bazise $\{\,\lnot\}$”, Diskret. analiz i issled. operatsii, 16:6 (2009), 12–22 | MR
[4] Chashkin A. V., “O srednem vremeni vychisleniya znachenii bulevykh funktsii”, Diskret. analiz i issled. operatsii. Ser. 1, 4:1 (1997), 60–78 | MR | Zbl