On reconstructive sets of vertices in the Boolean cube
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 1, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of a reconstructive set of the Boolean cube is introduced in terms of Fourier transform. The characterization of linear reconstructive sets is obtained. Necessary and sufficient conditions of the reconstructivity of a sphere are established. Sufficient conditions of the reconstructivity of two concentric spheres are found. Bibliogr. 9.
Mots-clés : Fourier transform, reconstructive set, Krawtchouk polynomial
Keywords: linear subspace, Johnson scheme.
@article{DA_2012_19_1_a0,
     author = {A. Yu. Vasil'eva},
     title = {On reconstructive sets of vertices in the {Boolean} cube},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2012_19_1_a0/}
}
TY  - JOUR
AU  - A. Yu. Vasil'eva
TI  - On reconstructive sets of vertices in the Boolean cube
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2012
SP  - 3
EP  - 16
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2012_19_1_a0/
LA  - ru
ID  - DA_2012_19_1_a0
ER  - 
%0 Journal Article
%A A. Yu. Vasil'eva
%T On reconstructive sets of vertices in the Boolean cube
%J Diskretnyj analiz i issledovanie operacij
%D 2012
%P 3-16
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2012_19_1_a0/
%G ru
%F DA_2012_19_1_a0
A. Yu. Vasil'eva. On reconstructive sets of vertices in the Boolean cube. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/DA_2012_19_1_a0/

[1] Avgustinovich S. V., “Ob odnom svoistve sovershennykh dvoichnykh kodov”, Diskret. analiz i issled. operatsii. Ser. 1, 2:1 (1995), 4–6 | MR | Zbl

[2] Avgustinovich S. V., Vasileva A. Yu., “Vychislenie tsentrirovannoi funktsii po eë znacheniyam na srednikh sloyakh buleva kuba”, Diskret. analiz i issled. operatsii. Ser. 1, 10:2 (2003), 3–16 | MR | Zbl

[3] Avgustinovich S. V., Vasileva A. Yu., “Teoremy vosstanovleniya dlya tsentrirovannykh funktsii i sovershennykh kodov”, Sib. mat. zhurn., 49:3 (2008), 483–489 | MR | Zbl

[4] Bannai E., Ito T., Algebraicheskaya kombinatorika. Skhemy otnoshenii, Mir, M., 1987, 374 pp. | MR

[5] Delsart F., Algebraicheskii podkhod k skhemam otnoshenii teorii kodirovaniya, Mir, M., 1976, 136 pp. | MR

[6] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979, 744 pp.

[7] Heden O., “On the reconstruction of perfect codes”, Discrete Math., 256 (2002), 479–485 | DOI | MR | Zbl

[8] Vasil'eva A., “On reconstruction of generalized centered functions”, Proc. 9th Int. Workshop “Algebraic and combinatorial coding theory” (Kranevo, Bulgaria, June 19–25, 2004), Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Sophia, 2004, 385–389

[9] Vasil'eva A. Yu., “On reconstruction of functions on the hypercube”, Proc. Int. Workshop Coding Cryptography (Bergen, Norway, March 14–18, 2005), The Selmer Center, Bergen, 2005, 491–498