Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2011_18_6_a0, author = {V. A. Emelichev and V. V. Korotkov}, title = {On stability radius of effective solution of vector quadratic boolean bottleneck problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {3--16}, publisher = {mathdoc}, volume = {18}, number = {6}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2011_18_6_a0/} }
TY - JOUR AU - V. A. Emelichev AU - V. V. Korotkov TI - On stability radius of effective solution of vector quadratic boolean bottleneck problem JO - Diskretnyj analiz i issledovanie operacij PY - 2011 SP - 3 EP - 16 VL - 18 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2011_18_6_a0/ LA - ru ID - DA_2011_18_6_a0 ER -
%0 Journal Article %A V. A. Emelichev %A V. V. Korotkov %T On stability radius of effective solution of vector quadratic boolean bottleneck problem %J Diskretnyj analiz i issledovanie operacij %D 2011 %P 3-16 %V 18 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2011_18_6_a0/ %G ru %F DA_2011_18_6_a0
V. A. Emelichev; V. V. Korotkov. On stability radius of effective solution of vector quadratic boolean bottleneck problem. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 6, pp. 3-16. http://geodesic.mathdoc.fr/item/DA_2011_18_6_a0/
[1] Gordeev E. N., Kalinovskii M. A., “Ob ustoichivosti reshenii v zadachakh vychislitelnoi geometrii”, Kibernetika i sistem. analiz, 1999, no. 2, 3–14 | MR | Zbl
[2] Gordeev E. N., Leontev V. K., “Obschii podkhod k issledovaniyu ustoichivosti reshenii v zadachakh diskretnoi optimizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 36:1 (1996), 66–72 | MR | Zbl
[3] Gurevskii E. E., Emelichev V. A., “O pyati tipakh ustoichivosti leksikograficheskogo varianta kombinatornoi zadachi na uzkie mesta”, Diskret. matematika, 21:3 (2009), 3–13 | MR
[4] Demyanov V. F., Malozëmov V. N., Vvedenie v minimaks, Nauka, M., 1972, 368 pp. | MR
[5] Emelichev V. A., Gurevskii E. E., “O yadre ustoichivosti mnogokriterialnoi kombinatornoi minimaksnoi zadachi”, Diskret. analiz i issled. operatsii, 15:5 (2008), 6–19 | MR
[6] Emelichev V. A., Karelkina O. V., “Konechnye koalitsionnye igry: parametrizatsiya kontseptsii ravnovesiya (ot Pareto do Nesha) i ustoichivost effektivnoi situatsii v metrike Gëldera”, Diskret. matematika, 21:2 (2009), 43–50 | MR
[7] Emelichev V. A., Karpuk A. V., Kuzmin K. G., “O kvaziustoichivosti leksikograficheskoi minimaksnoi kombinatornoi zadachi c raspadayuschimisya peremennymi”, Diskret. analiz i issled. operatsii, 17:3 (2010), 32–45 | MR
[8] Emelichev V. A., Korotkov V. V., “Otsenki radiusa ustoichivosti leksikograficheskogo optimuma vektornoi bulevoi zadachi s kriteriyami riskov Sevidzha”, Diskret. analiz i issled. operatsii, 18:2 (2011), 41–50
[9] Emelichev V. A., Kuzmin K. G., “Obschii podkhod k issledovaniyu ustoichivosti pareto-optimalnogo resheniya vektornoi zadachi tselochislennogo lineinogo programmirovaniya”, Diskret. matematika, 19:3 (2007), 79–83 | MR | Zbl
[10] Emelichev V. A., Kuzmin K. G., “Kriterii ustoichivosti vektornykh kombinatornykh zadach “na uzkie mesta” v terminakh binarnykh otnoshenii”, Kibernetika i sist. analiz, 2008, no. 3, 103–111 | MR | Zbl
[11] Emelichev V. A., Podkopaev D. P., “Ustoichivost i regulyarizatsiya vektornykh zadach tselochislennogo lineinogo programmirovaniya”, Diskret. analiz i issled. operatsii. Ser. 2, 8:1 (2001), 47–69 | MR | Zbl
[12] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2009, 572 pp.
[13] Petrosyan L. A., Zenkevich N. A., Sëmina E. A., Teoriya igr, Vyssh. shk., M., 1998, 304 pp. | MR | Zbl
[14] Sukharev A. G., Minimaksnye algoritmy v zadachakh chislennogo analiza, Librekom, M., 2009, 304 pp.
[15] Fëdorov V. V., Chislennye metody maksimina, Nauka, M., 1979, 278 pp. | MR
[16] Fon Neiman Dzh., Morgenshtern O., Teoriya igr i ekonomicheskoe povedenie, Nauka, M., 1970, 707 pp. | MR
[17] Daskin M. S., Network and discrete location: models, algorithms and applications, John Wiley and Sons, New York, 1995, 520 pp. | MR
[18] Markowitz H. M., Portfolio selection: efficient diversification of investments, Blackwell Publ., Oxford, 1991, 384 pp.
[19] Minimax and applications, Kluwer Acad. Publ., Dordrecht, 1995, 308 pp.
[20] Savage L. J., The foundations of statistics, Dover Publ., New York, 1972, 310 pp. | MR | Zbl
[21] Smale S., “Global analysis and economics. V: Pareto theory with constraints”, J. Math. Econ., 1:3 (1974), 213–221 | DOI | MR | Zbl