On stability radius of effective solution of vector quadratic boolean bottleneck problem
Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 6, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a multicriteria minimax (bottleneck) problem with optimization of quadratic forms over the sets of the vertices of the unit cubes of different dimensions (a problem with the splitting variables). We obtained lower and upper attainable bounds for the stability radius of the Pareto optimal solution in the case when the initial data undergo independent perturbations. Bibliogr. 21.
Keywords: vector quadratic boolean problem, minimax criteria with the splitting variables, stability radius.
Mots-clés : efficient solution
@article{DA_2011_18_6_a0,
     author = {V. A. Emelichev and V. V. Korotkov},
     title = {On stability radius of effective solution of vector quadratic boolean bottleneck problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2011_18_6_a0/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - V. V. Korotkov
TI  - On stability radius of effective solution of vector quadratic boolean bottleneck problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2011
SP  - 3
EP  - 16
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2011_18_6_a0/
LA  - ru
ID  - DA_2011_18_6_a0
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A V. V. Korotkov
%T On stability radius of effective solution of vector quadratic boolean bottleneck problem
%J Diskretnyj analiz i issledovanie operacij
%D 2011
%P 3-16
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2011_18_6_a0/
%G ru
%F DA_2011_18_6_a0
V. A. Emelichev; V. V. Korotkov. On stability radius of effective solution of vector quadratic boolean bottleneck problem. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 6, pp. 3-16. http://geodesic.mathdoc.fr/item/DA_2011_18_6_a0/

[1] Gordeev E. N., Kalinovskii M. A., “Ob ustoichivosti reshenii v zadachakh vychislitelnoi geometrii”, Kibernetika i sistem. analiz, 1999, no. 2, 3–14 | MR | Zbl

[2] Gordeev E. N., Leontev V. K., “Obschii podkhod k issledovaniyu ustoichivosti reshenii v zadachakh diskretnoi optimizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 36:1 (1996), 66–72 | MR | Zbl

[3] Gurevskii E. E., Emelichev V. A., “O pyati tipakh ustoichivosti leksikograficheskogo varianta kombinatornoi zadachi na uzkie mesta”, Diskret. matematika, 21:3 (2009), 3–13 | MR

[4] Demyanov V. F., Malozëmov V. N., Vvedenie v minimaks, Nauka, M., 1972, 368 pp. | MR

[5] Emelichev V. A., Gurevskii E. E., “O yadre ustoichivosti mnogokriterialnoi kombinatornoi minimaksnoi zadachi”, Diskret. analiz i issled. operatsii, 15:5 (2008), 6–19 | MR

[6] Emelichev V. A., Karelkina O. V., “Konechnye koalitsionnye igry: parametrizatsiya kontseptsii ravnovesiya (ot Pareto do Nesha) i ustoichivost effektivnoi situatsii v metrike Gëldera”, Diskret. matematika, 21:2 (2009), 43–50 | MR

[7] Emelichev V. A., Karpuk A. V., Kuzmin K. G., “O kvaziustoichivosti leksikograficheskoi minimaksnoi kombinatornoi zadachi c raspadayuschimisya peremennymi”, Diskret. analiz i issled. operatsii, 17:3 (2010), 32–45 | MR

[8] Emelichev V. A., Korotkov V. V., “Otsenki radiusa ustoichivosti leksikograficheskogo optimuma vektornoi bulevoi zadachi s kriteriyami riskov Sevidzha”, Diskret. analiz i issled. operatsii, 18:2 (2011), 41–50

[9] Emelichev V. A., Kuzmin K. G., “Obschii podkhod k issledovaniyu ustoichivosti pareto-optimalnogo resheniya vektornoi zadachi tselochislennogo lineinogo programmirovaniya”, Diskret. matematika, 19:3 (2007), 79–83 | MR | Zbl

[10] Emelichev V. A., Kuzmin K. G., “Kriterii ustoichivosti vektornykh kombinatornykh zadach “na uzkie mesta” v terminakh binarnykh otnoshenii”, Kibernetika i sist. analiz, 2008, no. 3, 103–111 | MR | Zbl

[11] Emelichev V. A., Podkopaev D. P., “Ustoichivost i regulyarizatsiya vektornykh zadach tselochislennogo lineinogo programmirovaniya”, Diskret. analiz i issled. operatsii. Ser. 2, 8:1 (2001), 47–69 | MR | Zbl

[12] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2009, 572 pp.

[13] Petrosyan L. A., Zenkevich N. A., Sëmina E. A., Teoriya igr, Vyssh. shk., M., 1998, 304 pp. | MR | Zbl

[14] Sukharev A. G., Minimaksnye algoritmy v zadachakh chislennogo analiza, Librekom, M., 2009, 304 pp.

[15] Fëdorov V. V., Chislennye metody maksimina, Nauka, M., 1979, 278 pp. | MR

[16] Fon Neiman Dzh., Morgenshtern O., Teoriya igr i ekonomicheskoe povedenie, Nauka, M., 1970, 707 pp. | MR

[17] Daskin M. S., Network and discrete location: models, algorithms and applications, John Wiley and Sons, New York, 1995, 520 pp. | MR

[18] Markowitz H. M., Portfolio selection: efficient diversification of investments, Blackwell Publ., Oxford, 1991, 384 pp.

[19] Minimax and applications, Kluwer Acad. Publ., Dordrecht, 1995, 308 pp.

[20] Savage L. J., The foundations of statistics, Dover Publ., New York, 1972, 310 pp. | MR | Zbl

[21] Smale S., “Global analysis and economics. V: Pareto theory with constraints”, J. Math. Econ., 1:3 (1974), 213–221 | DOI | MR | Zbl