Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2011_18_4_a4, author = {N. V. Smirnova and S. I. Tarashina}, title = {On a~generalization of $N$-nucleolus in cooperative games}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {77--93}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2011_18_4_a4/} }
TY - JOUR AU - N. V. Smirnova AU - S. I. Tarashina TI - On a~generalization of $N$-nucleolus in cooperative games JO - Diskretnyj analiz i issledovanie operacij PY - 2011 SP - 77 EP - 93 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2011_18_4_a4/ LA - ru ID - DA_2011_18_4_a4 ER -
N. V. Smirnova; S. I. Tarashina. On a~generalization of $N$-nucleolus in cooperative games. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 4, pp. 77-93. http://geodesic.mathdoc.fr/item/DA_2011_18_4_a4/
[1] Pecherskii S. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, Izd-vo Evrop. un-ta v Sankt-Peterburge, SPb., 2004, 456 pp.
[2] Maschler M., “The bargaining set, kernel, and nucleolus: a survey”, Handbook of game theory, v. 1, Elsevier Sci. Publ. BV, Berlin, 1992, 591–665 | MR
[3] Maschler M., Peleg B., Shapley L. S., “Geometric properties of the kernel, nucleolus and related solution concepts”, Math. Oper. Res., 4 (1979), 303–338 | DOI | MR | Zbl
[4] Scarf H., “The core of an $N$ person game”, Econometrica, 35 (1967), 50–69 | DOI | MR | Zbl
[5] Schmeidler D., “The nucleolus of a characteristic function game”, SIAM J. Appl. Math., 17 (1969), 1163–1170 | DOI | MR | Zbl
[6] Shapley L. S., “A value for $n$-person games”, Contributions to the theory of games, v. II, Princeton Univ. Press, Princeton, 1953, 307–317 | MR
[7] Sudhölter P., “The modified nucleolus: properties and axiomatizations”, Int. J. Game Theory, 26 (1997), 147–182 | DOI | MR
[8] Tarashnina S., “The simplified modified nucleolus of a cooperative TU-game”, TOP: Oper. Res. Decision Theory, 19:1 (2011), 150–166