Local search over generalized neighborhood for an optimization problem of pseudo-Boolean functions
Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 4, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an algorithm for local search with generalized neighborhood for a pseudo-Boolean function optimization problem. A generalized neighborhood is constructed for locally optimal solutions that contains other locally optimal solutions which surround the former. We bring results of numerical experiments with usage of pseudo-Boolean functions whose optimization is equivalent to problems of facility location, set coverage, and competitive facility location. The aim of experiments is comparative estimating of locally optimal solutions obtained with the common local search algorithm and the algorithm of local search with generalized neighborhood. Tabl. 6, bibliogr. 11.
Keywords: optimization, local search, facility location problem, set coverage problem.
Mots-clés : polynomial of Boolean variables
@article{DA_2011_18_4_a0,
     author = {V. L. Beresnev and E. N. Goncharov and A. A. Mel'nikov},
     title = {Local search over generalized neighborhood for an optimization problem of {pseudo-Boolean} functions},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2011_18_4_a0/}
}
TY  - JOUR
AU  - V. L. Beresnev
AU  - E. N. Goncharov
AU  - A. A. Mel'nikov
TI  - Local search over generalized neighborhood for an optimization problem of pseudo-Boolean functions
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2011
SP  - 3
EP  - 16
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2011_18_4_a0/
LA  - ru
ID  - DA_2011_18_4_a0
ER  - 
%0 Journal Article
%A V. L. Beresnev
%A E. N. Goncharov
%A A. A. Mel'nikov
%T Local search over generalized neighborhood for an optimization problem of pseudo-Boolean functions
%J Diskretnyj analiz i issledovanie operacij
%D 2011
%P 3-16
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2011_18_4_a0/
%G ru
%F DA_2011_18_4_a0
V. L. Beresnev; E. N. Goncharov; A. A. Mel'nikov. Local search over generalized neighborhood for an optimization problem of pseudo-Boolean functions. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 4, pp. 3-16. http://geodesic.mathdoc.fr/item/DA_2011_18_4_a0/

[1] Beresnev V. L., Diskretnye zadachi razmescheniya i polinomy ot bulevykh peremennykh, Izd-vo In-ta matematiki, Novosibirsk, 2005, 408 pp.

[2] Beresnev V. L., “Verkhnie otsenki dlya tselevykh funktsii diskretnykh zadach konkurentnogo razmescheniya predpriyatii”, Diskret. analiz i issled. operatsii, 15:4 (2008), 3–24 | MR

[3] Beresnev V. L., Melnikov A. A., “Priblizhënnye algoritmy dlya zadachi konkurentnogo razmescheniya predpriyatii”, Diskret. analiz i issled. operatsii, 17:6 (2010), 3–19 | MR

[4] http://www.math.nsc.ru/AP/benchmarks/

[5] Beasly J. E., “An algorithm for set covering problem”, Eur. J. Oper. Res., 31 (1987), 85–93 | DOI | MR

[6] Beasly J. E., “OR-library: distributing test problems by electronic mail”, Eur. J. Oper. Res., 41 (1990), 1069–1072

[7] Dempe S., Foundations of bilevel programming, Kluwer Acad. Publ., Dordrecht, 2002, 332 pp. | MR | Zbl

[8] Mirchandani P. B., Francis R. L. (eds.), Discrete location theory, John Wiley and Sons, New York, 1990, 555 pp. | MR | Zbl

[9] Dobson G., Karmarkar U., “Competitive location on network”, Oper. Res., 35 (1987), 565–574 | DOI | MR | Zbl

[10] Hammer P. L., Rudeanu S., Boolean method in operations research and related areas, Springer-Verl., Berlin, 1968, 330 pp. | MR | Zbl

[11] Local Search in Combinatorial Optimization, John Wiley and Sons, Chichester, 1997, 512 pp. | MR