Optimal Eulerian coverings with ordered enclosing for plane graphs
Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 2, pp. 64-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the optimal criteria for sequences of trails with ordered enclosing is the length of additional segments between the end of current trail and the beginning of the next one. Known algorithms for constructing such the covering do not consider this criterion. This paper is devoted to an algorithm for constructing of Eulerian covering with ordered enclosing and minimal value of indicated criterion. Ill. 1, bibliogr. 12.
Keywords: plane graph, trail, covering, path, ordered enclosing.
@article{DA_2011_18_2_a5,
     author = {T. A. Panyukova},
     title = {Optimal {Eulerian} coverings with ordered enclosing for plane graphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {64--74},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2011_18_2_a5/}
}
TY  - JOUR
AU  - T. A. Panyukova
TI  - Optimal Eulerian coverings with ordered enclosing for plane graphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2011
SP  - 64
EP  - 74
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2011_18_2_a5/
LA  - ru
ID  - DA_2011_18_2_a5
ER  - 
%0 Journal Article
%A T. A. Panyukova
%T Optimal Eulerian coverings with ordered enclosing for plane graphs
%J Diskretnyj analiz i issledovanie operacij
%D 2011
%P 64-74
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2011_18_2_a5/
%G ru
%F DA_2011_18_2_a5
T. A. Panyukova. Optimal Eulerian coverings with ordered enclosing for plane graphs. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 2, pp. 64-74. http://geodesic.mathdoc.fr/item/DA_2011_18_2_a5/

[1] Panyukova T. A., “Postroenie eilerovykh tsiklov spetsialnogo vida v planarnom grafe”, Materialy VII mezhdunar. seminara “Diskretnaya matematika i ee prilozheniya”, Ch. II, ed. O. B. Lupanov, Izd-vo tsentra prikladnykh issledovanii pri mekhaniko-matematicheskom fakultete MGU, M., 2001, 149

[2] Panyukova T. A., “Postroenie marshrutov s uporyadochennym okhvatyvaniem v ploskikh grafakh”, 36-ya region. molodezh. konferentsiya “Problemy teoreticheskoi i prikladnoi matematiki” (Ekaterinburg, 30 yanvarya – 4 fevralya 2005 g.), Trudy, UrO RAN, Ekaterinburg, 2005, 61–66

[3] Panyukova T. A., “Obkhody s uporyadochennym okhvatyvaniem v ploskikh grafakh”, Diskret. analiz i issled. operatsii. Ser. 2, 13:2 (2006), 31–43 | MR

[4] Panyukova T. A., “Nekotorye kriterii otsenki raskroinykh planov”, IV vseros. konferentsiya “Problemy optimizatsii i ekonomicheskie prilozheniya” (Omsk, 29 iyunya – 4 iyulya 2009 g.), Materialy, Poligraficheskii tsentr KAN, Omsk, 2009, 238

[5] Panyukova T. A., “Pokrytiya s uporyadochennym okhvatyvaniem s minimalnoi dlinoi dopolnitelnykh postroenii”, Vseros. konf. “Diskretnaya optimizatsiya i issledovanie operatsii” (Novosibirsk, 27 iyunya – 2 iyulya 2010 g.), Materialy konferentsii, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2010, 150

[6] Flyaishner G., Eilerovy grafy i smezhnye voprosy, Mir, M., 2002, 335 pp.

[7] Fleischner H., Eulerian graphs and related topics, Part 1, Vol. 2, Ann. Discrete Math., 50, 1991, 336 pp. | MR | Zbl

[8] Panioukova T. A., Panyukov A. V., “Algorithms for construction of ordered enclosing traces in planar eulerian graphs”, Int. Workshop Comput. Sci. Information Technologies' 2003 (Ufa, September 16–18, 2003), Proc., v. 1, Ufa State Technical Univ., Ufa, 2003, 134–138

[9] Panyukov A. V., Panyukova T. A., “The algorithm for tracing of flat Euler cycles with ordered enclosing”, Proc. Chelyabinsk Sci. Center, 2000, no. 4(9), 18–22 http://www.sci.urc.ac.ru/news/2000_4/2000_4_1_4.pdf | MR

[10] Panyukova T., “Chain sequences with ordered enclosing”, J. Comput. Syst. Sci. Int., 46:1 (2007), 83–92 | DOI | MR

[11] Panyukova T., “Cover with ordered enclosing for flat graphs”, Electron. Notes Discrete Math., 28 (2007), 17–24 | DOI | MR | Zbl

[12] Panyukova T. A., Panyukov A. V., “Decreasing of length for routes with ordered enclosing”, Mezhdunar. nauch. konferentsiya "Diskretnaya matematika, algebra i ikh prilozheniya (Minsk, 19–22 oktyabrya 2009 g.), Tez. dokl., In-t matematiki NAN Belarusi, Minsk, 2009, 155–157