An approximation algorithm for one problem of cluster analysis
Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 2, pp. 29-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

A 2-approximation algorithm is presented for a data analysis problem which was previously reduced to an NP-hard optimization problem. Particularly, the problem is to partition a set of Euclidean vectors into two subsets (clusters) under the criterion of minimum-sum-of-squares. Bibliogr. 7.
Keywords: search for a vector subset, cluster analysis, NP-hardness, efficient approximate algorithm.
@article{DA_2011_18_2_a2,
     author = {A. V. Dolgushev and A. V. Kel'manov},
     title = {An approximation algorithm for one problem of cluster analysis},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {29--40},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2011_18_2_a2/}
}
TY  - JOUR
AU  - A. V. Dolgushev
AU  - A. V. Kel'manov
TI  - An approximation algorithm for one problem of cluster analysis
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2011
SP  - 29
EP  - 40
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2011_18_2_a2/
LA  - ru
ID  - DA_2011_18_2_a2
ER  - 
%0 Journal Article
%A A. V. Dolgushev
%A A. V. Kel'manov
%T An approximation algorithm for one problem of cluster analysis
%J Diskretnyj analiz i issledovanie operacij
%D 2011
%P 29-40
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2011_18_2_a2/
%G ru
%F DA_2011_18_2_a2
A. V. Dolgushev; A. V. Kel'manov. An approximation algorithm for one problem of cluster analysis. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 2, pp. 29-40. http://geodesic.mathdoc.fr/item/DA_2011_18_2_a2/

[1] Baburin A. E., Gimadi E. Kh., Glebov N. I., Pyatkin A. V., “Zadacha otyskaniya podmnozhestva vektorov s maksimalnym summarnym vesom”, Diskret. analiz i issled. operatsii. Ser. 2, 14:1 (2007), 32–42 | MR

[2] Gimadi E. Kh., Glazkov Yu. V., Rykov I. A., “O dvukh zadachakh vybora podmnozhestva vektorov s tselochislennymi koordinatami v evklidovom prostranstve s maksimalnoi normoi summoi raznosti”, Diskret. analiz i issled. operatsii, 15:4 (2008), 30–43 | MR

[3] Gimadi E. Kh., Kelmanov A. V., Kelmanova M. A., Khamidullin S. A., “Aposteriornoe obnaruzhenie v chislovoi posledovatelnosti kvaziperiodicheskogo fragmenta pri zadannom chisle povtorov”, Sib. zhurn. industr. matematiki, 9:1 (2006), 55–74 | MR | Zbl

[4] Gimadi E. Kh., Pyatkin A. V., Rykov I. A., “O polinomialnoi razreshimosti nekotorykh zadach vybora podmnozhestva vektorov v evklidovom prostranstve fiksirovannoi razmernosti”, Diskret. analiz i issled. operatsii, 15:6 (2008), 11–19 | MR

[5] Kelmanov A. V., “Problema off-line obnaruzheniya povtoryayuschegosya fragmenta v chislovoi posledovatelnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 81–88 | Zbl

[6] Kel'manov A. V., Jeon B., “A posteriori joint detection and discrimination of pulses in a quasiperiodic pulse train”, IEEE Trans. Signal Processing, 52:3 (2004), 1–12 | MR

[7] Wirth H., Algorithms + data structures = programs, Prentice Hall, New Jersey, 1976, 366 pp. | MR | Zbl