The enumerative properties of combinatorial partition polynomials
Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 1, pp. 3-14
Voir la notice de l'article provenant de la source Math-Net.Ru
The enumerative interpretations of homogeneous Platonov polynomials and their generalizations are found. A combinatorial way of solving Schroder's fourth problem (all variants of putting elements of a set in brackets) and its generalizations are proposed. The several problems of enumerating trees are studied. Bibliogr. 6.
Keywords:
combinatorial partition polynomial, rooted tree, Schroder's fourth problem.
@article{DA_2011_18_1_a0,
author = {A. A. Balaghura and O. V. Kuzmin},
title = {The enumerative properties of combinatorial partition polynomials},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {3--14},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2011_18_1_a0/}
}
TY - JOUR AU - A. A. Balaghura AU - O. V. Kuzmin TI - The enumerative properties of combinatorial partition polynomials JO - Diskretnyj analiz i issledovanie operacij PY - 2011 SP - 3 EP - 14 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2011_18_1_a0/ LA - ru ID - DA_2011_18_1_a0 ER -
A. A. Balaghura; O. V. Kuzmin. The enumerative properties of combinatorial partition polynomials. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/DA_2011_18_1_a0/