The enumerative properties of combinatorial partition polynomials
Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 1, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The enumerative interpretations of homogeneous Platonov polynomials and their generalizations are found. A combinatorial way of solving Schroder's fourth problem (all variants of putting elements of a set in brackets) and its generalizations are proposed. The several problems of enumerating trees are studied. Bibliogr. 6.
Keywords: combinatorial partition polynomial, rooted tree, Schroder's fourth problem.
@article{DA_2011_18_1_a0,
     author = {A. A. Balaghura and O. V. Kuzmin},
     title = {The enumerative properties of combinatorial partition polynomials},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2011_18_1_a0/}
}
TY  - JOUR
AU  - A. A. Balaghura
AU  - O. V. Kuzmin
TI  - The enumerative properties of combinatorial partition polynomials
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2011
SP  - 3
EP  - 14
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2011_18_1_a0/
LA  - ru
ID  - DA_2011_18_1_a0
ER  - 
%0 Journal Article
%A A. A. Balaghura
%A O. V. Kuzmin
%T The enumerative properties of combinatorial partition polynomials
%J Diskretnyj analiz i issledovanie operacij
%D 2011
%P 3-14
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2011_18_1_a0/
%G ru
%F DA_2011_18_1_a0
A. A. Balaghura; O. V. Kuzmin. The enumerative properties of combinatorial partition polynomials. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/DA_2011_18_1_a0/

[1] Kuzmin O. V., Obobschënnye piramidy Paskalya i ikh prilozheniya, Nauka. Sibirskaya izdatelskaya firma RAN, Novosibirsk, 2000, 294 pp. | MR

[2] Kuzmin O. V., Leonova O. V., “O polinomakh razbienii”, Diskret. matematika, 13:2 (2001), 144–158 | MR | Zbl

[3] Kuzmin O. V., Tyurneva T. G., “Chisla Shrëdera, ikh obobscheniya i prilozheniya”, Asimptotich. i perechislit. zadachi kombinat. analiza, Irkut. gos. un-t, Irkutsk, 1997, 117–125

[4] Platonov M. L., Kombinatornye chisla klassa otobrazhenii i ikh prilozheniya, Nauka, M., 1979, 152 pp. | MR

[5] Riordan Dzh., Vvedenie v kombinatornyi analiz, Izd-vo inostr. lit., M., 1963, 287 pp.

[6] Stenli R., Perechislitelnaya kombinatorika. Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Mir, M., 2005, 767 pp. | MR