The automorphism group of a $q$-ary Hamming code
Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 6, pp. 50-55
Cet article a éte moissonné depuis la source Math-Net.Ru
It is well known that the semilinear symmetry group of a $q$-ary Hamming code $\mathcal H$ with length $n=\frac{q^m-1}{q-1}$ is isomorphic to $\mathit\Gamma L_m(q)$. This does not clarify if all symmetries of the code are semilinear or not. Here we prove that each symmetry of the code constituted by all triples in $\mathcal H$ is semilinear. This implies that every symmetry of the Hamming code is semilinear. So, it is shown that the automorphism group of a $q$-ary Hamming code is isomorphic to the semidirect product $\mathit\Gamma L_m(q)\rightthreetimes\mathcal H$. Bibliogr. 4.
Keywords:
the Hamming code
Mots-clés : automorphism group.
Mots-clés : automorphism group.
@article{DA_2010_17_6_a2,
author = {E. V. Gorkunov},
title = {The automorphism group of a~$q$-ary {Hamming} code},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {50--55},
year = {2010},
volume = {17},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2010_17_6_a2/}
}
E. V. Gorkunov. The automorphism group of a $q$-ary Hamming code. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 6, pp. 50-55. http://geodesic.mathdoc.fr/item/DA_2010_17_6_a2/
[1] Gorkunov E. V., “Monomialnye avtomorfizmy lineinoi i prostoi komponent koda Khemminga”, Diskret. analiz i issled. operatsii, 17:1 (2010), 11–33 | MR
[2] Gorkunov E. V., “Gruppa perestanovochnykh avtomorfizmov $q$-ichnogo koda Khemminga”, Probl. peredachi inform., 45:4 (2009), 18–25 | MR | Zbl
[3] Huffman W. C., “Codes and groups”, Handbook of coding theory, Elsevier Sci., Amsterdam–New York, 1998, Ch. 6, 1345–1440 | MR
[4] MacWilliams F. J., Combinatorial problems of elementary Abelian groups, Doctoral thesis, Harvard Univ., Harvard, 1962, 93 pp.