The automorphism group of a~$q$-ary Hamming code
Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 6, pp. 50-55
Voir la notice de l'article provenant de la source Math-Net.Ru
It is well known that the semilinear symmetry group of a $q$-ary Hamming code $\mathcal H$ with length $n=\frac{q^m-1}{q-1}$ is isomorphic to $\mathit\Gamma L_m(q)$. This does not clarify if all symmetries of the code are semilinear or not. Here we prove that each symmetry of the code constituted by all triples in $\mathcal H$ is semilinear. This implies that every symmetry of the Hamming code is semilinear. So, it is shown that the automorphism group of a $q$-ary Hamming code is isomorphic to the semidirect product $\mathit\Gamma L_m(q)\rightthreetimes\mathcal H$. Bibliogr. 4.
Keywords:
the Hamming code
Mots-clés : automorphism group.
Mots-clés : automorphism group.
@article{DA_2010_17_6_a2,
author = {E. V. Gorkunov},
title = {The automorphism group of a~$q$-ary {Hamming} code},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {50--55},
publisher = {mathdoc},
volume = {17},
number = {6},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2010_17_6_a2/}
}
E. V. Gorkunov. The automorphism group of a~$q$-ary Hamming code. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 6, pp. 50-55. http://geodesic.mathdoc.fr/item/DA_2010_17_6_a2/