List 2-distance $(\Delta+1)$-coloring of planar graphs with girth at least~7
Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 5, pp. 22-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

A trivial lower bound for the 2-distance chromatic number $\chi_2(G)$ of every graph $G$ with maximum degree $\Delta$ is $\Delta+1$. There are graphs with arbitrarily large $\Delta$ and girth $g\le6$ having $\chi_2(G)\ge\Delta+2$. In the paper are improved previously known restrictions on $\Delta$ and $g$ under which every planar graph $G$ has $\chi_2(G)=\Delta+1$. Ill. 2, bibliogr. 24.
Keywords: planar graph, 2-distance coloring, list coloring.
@article{DA_2010_17_5_a2,
     author = {A. O. Ivanova},
     title = {List 2-distance $(\Delta+1)$-coloring of planar graphs with girth at least~7},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {22--36},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2010_17_5_a2/}
}
TY  - JOUR
AU  - A. O. Ivanova
TI  - List 2-distance $(\Delta+1)$-coloring of planar graphs with girth at least~7
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2010
SP  - 22
EP  - 36
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2010_17_5_a2/
LA  - ru
ID  - DA_2010_17_5_a2
ER  - 
%0 Journal Article
%A A. O. Ivanova
%T List 2-distance $(\Delta+1)$-coloring of planar graphs with girth at least~7
%J Diskretnyj analiz i issledovanie operacij
%D 2010
%P 22-36
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2010_17_5_a2/
%G ru
%F DA_2010_17_5_a2
A. O. Ivanova. List 2-distance $(\Delta+1)$-coloring of planar graphs with girth at least~7. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 5, pp. 22-36. http://geodesic.mathdoc.fr/item/DA_2010_17_5_a2/

[1] Borodin O. V., Brusma Kh., Glebov A. N., Van-Den-Khoivel Ya., “Stroenie ploskikh triangulyatsii v terminakh puchkov i zvëzd”, Diskret. analiz i issled. operatsii. Ser. 1, 8:2 (2001), 15–39 | MR | Zbl

[2] Borodin O. V., Brusma Kh., Glebov A. N., Van-Den-Khoivel Ya., “Minimalnaya stepen i khromaticheskoe chislo kvadrata ploskogo grafa”, Diskret. analiz i issled. operatsii. Ser. 1, 8:4 (2001), 9–33 | MR | Zbl

[3] Borodin O. V., Glebov A. N., Ivanova A. O., Neustroeva T. K., Tashkinov V. A., “Dostatochnye usloviya 2-distantsionnoi ($\Delta+1$)-raskrashivaemosti ploskikh grafov”, Sib. elektron. mat. izv., 1 (2004), 129–141 http://semr.math.nsc.ru | MR | Zbl

[4] Borodin O. V., Ivanova A. O., “Predpisannaya 2-distantsionnaya $(\Delta+2)$-raskraska ploskikh grafov s obkhvatom 6 i $\Delta\ge24$”, Sib. mat. zhurn., 50:6 (2009), 1216–1224 | MR

[5] Borodin O. V., Ivanova A. O., Neustroeva T. K., “2-distantsionnaya raskraska razrezhennykh ploskikh grafov”, Sib. elektron. mat. izv., 1 (2004), 76–90 http://semr.math.nsc.ru | MR | Zbl

[6] Borodin O. V., Ivanova A. O., Neustroeva T. K., “Dostatochnye usloviya 2-distantsionnoi ($\Delta+1$)-raskrashivaemosti ploskikh grafov s obkhvatom 6”, Diskret. analiz i issled. operatsii. Ser. 1, 12:3 (2005), 32–47 | MR

[7] Borodin O. V., Ivanova A. O., Neustroeva T. K., “Dostatochnye usloviya minimalnoi 2-distantsionnoi raskrashivaemosti ploskikh grafov s obkhvatom 6”, Sib. elektron. mat. izv., 3 (2006), 441–450 http://semr.math.nsc.ru | MR | Zbl

[8] Borodin O. V., Ivanova A. O., Neustroeva T. K., “$(p,q)$-Raskraska razrezhennykh ploskikh grafov”, Mat. zametki YaGU, 1:2 (2006), 3–9 | MR | Zbl

[9] Borodin O. V., Ivanova A. O., Neustroeva T. K., “Predpisannaya $(p,q)$-raskraska razrezhennykh ploskikh grafov”, Sib. elektron. mat. izv., 3 (2006), 355–361 http://semr.math.nsc.ru | MR | Zbl

[10] Borodin O. V., Ivanova A. O., Neustroeva T. K., “Predpisannaya 2-distantsionnaya $(\Delta+1)$-raskrashivaemost ploskikh grafov s zadannym obkhvatom”, Diskret. analiz i issled. operatsii, 14:3 (2007), 13–30 | MR

[11] Ivanova A. O., Soloveva A. S., “2-Distantsionnaya $(\Delta +2)$-raskraska razrezhennykh ploskikh grafov s $\Delta=3$”, Mat. zametki YaGU, 16:2 (2009), 2–41 | MR

[12] Agnarsson G., Halldorsson M. M., “Coloring powers of planar graphs”, Proc. of 11th Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, January 9–11, 2000), SIAM press, Philadelphia, 2000, 654–662 | MR | Zbl

[13] Agnarsson G., Halldorsson M. M., “Coloring powers of planar graphs”, SIAM J. Discrete Math., 16:4 (2003), 651–662 | DOI | MR | Zbl

[14] Borodin O. V., “On the total coloring of planar graphs”, J. Reine Angew. Math., 394 (1989), 180–185 | MR | Zbl

[15] Borodin O. V., Ivanova A. O., “List 2-distance $(\Delta+2)$-coloring of planar graphs with girth six”, Europ. J. Combin., 30 (2009), 1257–1262 | DOI | MR | Zbl

[16] Borodin O. V., Ivanova A. O., “2-Distance $(\Delta+2)$-coloring of planar graphs with girth six and $\Delta\ge18$”, Discrete Math., 309 (2009), 6496–6502 | DOI | MR | Zbl

[17] Borodin O. V., Kostochka A. V., Woodall D. R., “List edge and list total colorings of multigraphs”, J. Combin. Theory Ser. B, 71:2 (1997), 184–204 | DOI | MR | Zbl

[18] Dvořák Z., Kràl D., Nejedlỳ P., Škrekovski R., “Coloring squares of planar graphs with girth six”, Europ. J. Combin., 29:4 (2008), 838–849 | DOI | MR | Zbl

[19] Dvořák Z., Škrekovski R., Tancer M., “List-coloring squares of sparse subcubic graphs”, SIAM J. Discrete Math., 22:1 (2008), 139–159 | DOI | MR | Zbl

[20] He W., Hou X., Lih K. W., Shao J., Wang W., Zhu X., “Edge-partitions of planar graphs and their game coloring numbers”, J. Graph Theory, 41 (2002), 307–317 | DOI | MR | Zbl

[21] Jensen T., Toft B., Graph Coloring Problems, John Willey Sons, New York, 1995, 245 pp. | MR | Zbl

[22] Molloy M., Salavatipour M. R., “Frequency channel assignment on planar networks”, Algorithms-ESA 2002, Lect. Notes Comput. Sci., 2461, eds. Mohring R. H., Raman R., Springer-Verl., Berlin, 2002, 736–747 | MR | Zbl

[23] Molloy M., Salavatipour M. R., “A bound on the chromatic number of the square of a planar graph”, J. Combin. Theory Ser. B, 94 (2005), 189–213 | DOI | MR | Zbl

[24] Wegner G., Graphs with given diameter and a coloring problem, Technical report, University of Dortmund, Dortmund, Germany, 1977, 12 pp.