On quasistability of the lexicographic minimax combinatorial problem with decomposing variables
Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 3, pp. 32-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multicriteria combinatorial sequential optimization problem with minimax criteria is considered. We obtained the formula for the limit level of the vector criteria parameters perturbations, for which all lexicographic optima of the initial problem are preserved. Bibl. 21.
Keywords: minimax problem, bottleneck problem, multi-objectiveness, sequential optimization, lexicographic set, lexicographic optimum, quasistability, quasistability radius.
@article{DA_2010_17_3_a2,
     author = {V. A. Emelichev and A. V. Karpuk and K. G. Kuzmin},
     title = {On quasistability of the lexicographic minimax combinatorial problem with decomposing variables},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {32--45},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2010_17_3_a2/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - A. V. Karpuk
AU  - K. G. Kuzmin
TI  - On quasistability of the lexicographic minimax combinatorial problem with decomposing variables
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2010
SP  - 32
EP  - 45
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2010_17_3_a2/
LA  - ru
ID  - DA_2010_17_3_a2
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A A. V. Karpuk
%A K. G. Kuzmin
%T On quasistability of the lexicographic minimax combinatorial problem with decomposing variables
%J Diskretnyj analiz i issledovanie operacij
%D 2010
%P 32-45
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2010_17_3_a2/
%G ru
%F DA_2010_17_3_a2
V. A. Emelichev; A. V. Karpuk; K. G. Kuzmin. On quasistability of the lexicographic minimax combinatorial problem with decomposing variables. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 3, pp. 32-45. http://geodesic.mathdoc.fr/item/DA_2010_17_3_a2/

[1] Vodennikov A. G., Emelichev V. A., Kuzmin K. G., “Ob odnom tipe ustoichivosti vektornoi kombinatornoi zadachi razmescheniya”, Diskret. analiz i issled. operatsii. Ser. 2, 14:2 (2007), 32–40 | MR

[2] Gordeev E. N., Kalinovskii M. A., “Ob ustoichivosti reshenii v zadachakh vychislitelnoi geometrii”, Kibernetika i sistemnyi analiz, 1999, no. 2, 3–14 | MR | Zbl

[3] Gordeev E. N., Leontev V. K., “Obschii podkhod k issledovaniyu ustoichivosti reshenii v zadachakh diskretnoi optimizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 36:1 (1996), 66–72 | MR | Zbl

[4] Gordeev E. N., Leontev V. K., “Ustoichivost v zadachakh na uzkie mesta”, Zhurn. vychisl. matematiki i mat. fiziki, 20:4 (1980), 1071–1075 | MR

[5] Gordeev E. N., “Ob ustoichivosti zadach na uzkie mesta”, Zhurn. vychisl. matematiki i mat. fiziki, 33:9 (1993), 1391–1402 | MR | Zbl

[6] Gurevskii E. E., Emelichev V. A., “Analiz ustoichivosti leksikograficheskoi bulevoi zadachi minimizatsii modulei lineinykh funktsii”, Diskret. analiz i issled. operatsii. Ser. 2, 14:1 (2007), 59–71 | MR

[7] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972, 368 pp. | MR

[8] Emelichev V. A., Berdysheva R. A., “O radiusakh ustoichivosti, kvaziustoichivosti i stabilnosti vektornoi traektornoi zadachi leksikograficheskoi optimizatsii”, Diskret. matematika, 10:1 (1998), 20–27 | MR | Zbl

[9] Emelichev V. A., Gurevskii E. E., “O pyati tipakh ustoichivosti leksikograficheskogo varianta kombinatornoi zadachi na uzkie mesta”, Diskret. matematika, 21:3 (2009), 3–13 | MR

[10] Emelichev V. A., Gurevskii E. E., “O yadre ustoichivosti mnogokriterialnoi kombinatornoi minimaksnoi zadachi”, Diskret. analiz i issled. operatsii, 15:5 (2008), 6–19 | MR

[11] Emelichev V. A., Karelkina O. V., “O kvaziustoichivosti leksikograficheskoi minisummnoi zadachi razmescheniya”, Diskret. analiz i issled. operatsii, 16:2 (2009), 74–84 | MR

[12] Emelichev V. A., Karpuk A. V., Kuzmin K. G., “O kvaziustoichivosti leksikograficheskoi minimaksnoi zadachi buleva programmirovaniya”, Diskret. matematika, algebra i ikh pril., Tez. dokl. Mezhdunar. nauch. konf., IM NAN Belarusi, Minsk, 2009, 91–92

[13] Emelichev V. A., Kuzmin K. G., “Kriterii ustoichivosti vektornykh kombinatornykh zadach “na uzkie mesta” v terminakh binarnykh otnoshenii”, Kibernetika i sistemnyi analiz, 2008, no. 3, 103–111 | MR | Zbl

[14] Emelichev V. A., Kuzmin K. G., Leonovich A. M., “Ustoichivost v vektornykh kombinatornykh zadachakh optimizatsii”, Avtomatika i telemekhanika, 2004, no. 2, 79–92 | MR | Zbl

[15] Emelichev V. A., Kuzmin K. G., “O radiuse ustoichivosti leksikograficheskogo optimuma odnoi vektornoi zadachi buleva programmirovaniya”, Kibernetika i sistemnyi analiz, 2005, no. 2, 71–80 | MR

[16] Emelichev V. A., Podkopaev D. P., “Ustoichivost i regulyarizatsiya vektornykh zadach tselochislennogo lineinogo programmirovaniya”, Diskret. analiz i issled. operatsii. Ser. 2, 8:1 (2001), 47–69 | MR | Zbl

[17] Podinovskii V. V., Gavrilov V. M., Optimizatsiya po posledovatelno primenyaemym kriteriyam, Sovetskoe radio, M., 1975, 192 pp. | MR | Zbl

[18] Fedorov V. V., Chislennye metody maksimina, Nauka, M., 1979, 280 pp. | MR

[19] Ehrgott M., Multicriteria optimization, Second edition, Springer-Verl., Berlin–Heidelberg, 2005, 323 pp. | MR

[20] Emelichev V. A., Krichko V. N., Nikulin Y. V., “The stability radius of an efficient solution in minimax Boolean programming problem”, Control Cybern., 33:1 (2004), 127–132 | MR | Zbl

[21] Du D.-Z., Pardalos P. M. (eds.), Minimax and applications, Kluwer Acad. Publ., Dordrecht, 1995, 308 pp. | MR