On the complexity of linear Boolean operators with thin matrixes
Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 3, pp. 3-18
Voir la notice de l'article provenant de la source Math-Net.Ru
It is considered the problem of construction of a “rectangle-free” Boolean $(n\times n)$-matrix $A$ (i.e. a matrix without ($2\times2$)-submatrixes of all unities) such that the corresponding linear mapping modulo 2 has complexity $o(\nu(A)-n)$ in the basis $\{\oplus\}$, where $\nu(A)$ is the weight of $A$, i.e. the number of unities. (In the paper by Mityagin and Sadovskiy (1965), where the problem was originally studied, “rectangle-free” matrixes were called thin matrixes.) Two constructions for solving the problem are introduced. In the first example $n=p^2$, where $p$ is an odd prime number. The weight of the corresponding matrix $H_p$ is $p^3$ and the complexity of the corresponding linear operator is $O(p^2\log p\log\log p)$. The matrix in the second example has weight $nk$, where $k$ is the cardinality of the Sidon set in $\mathbb Z_n$. One can put $k=\Theta(\sqrt n)$; for some $n$, Sidon sets of cardinality $k\sim\sqrt n$ are known. The complexity of the corresponding linear mapping is $O(n\log n\log\log n)$. Some generalizations of the problem are also considered. Bibl. 29.
Keywords:
Boolean circuit, complexity, linear Boolean operator, finite field
Mots-clés : discrete Fourier transform, circulant matrix, Sidon set.
Mots-clés : discrete Fourier transform, circulant matrix, Sidon set.
@article{DA_2010_17_3_a0,
author = {S. B. Gashkov and I. S. Sergeev},
title = {On the complexity of linear {Boolean} operators with thin matrixes},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {3--18},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2010_17_3_a0/}
}
TY - JOUR AU - S. B. Gashkov AU - I. S. Sergeev TI - On the complexity of linear Boolean operators with thin matrixes JO - Diskretnyj analiz i issledovanie operacij PY - 2010 SP - 3 EP - 18 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2010_17_3_a0/ LA - ru ID - DA_2010_17_3_a0 ER -
S. B. Gashkov; I. S. Sergeev. On the complexity of linear Boolean operators with thin matrixes. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 3, pp. 3-18. http://geodesic.mathdoc.fr/item/DA_2010_17_3_a0/