Solutions of a~cooperative differential group pursuit game
Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 2, pp. 57-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the non-zero sum group pursuit game with $m$ pursuers and one evader is considered. A new approach to finding a solution of this kind of games is proposed. The key point of the paper is to construct а cooperative solution of the game (the core) and compare it with an non-cooperative solutions such as Nash equilibria. We prove that there exists an nonempty time-consistent core in this game. Ill. 3, bibl. 14.
Keywords: group pursuit game, Nash equilibrium, differential cooperative game, time-consistency.
Mots-clés : core
@article{DA_2010_17_2_a4,
     author = {Ya. B. Pankratova},
     title = {Solutions of a~cooperative differential group pursuit game},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {57--78},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2010_17_2_a4/}
}
TY  - JOUR
AU  - Ya. B. Pankratova
TI  - Solutions of a~cooperative differential group pursuit game
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2010
SP  - 57
EP  - 78
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2010_17_2_a4/
LA  - ru
ID  - DA_2010_17_2_a4
ER  - 
%0 Journal Article
%A Ya. B. Pankratova
%T Solutions of a~cooperative differential group pursuit game
%J Diskretnyj analiz i issledovanie operacij
%D 2010
%P 57-78
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2010_17_2_a4/
%G ru
%F DA_2010_17_2_a4
Ya. B. Pankratova. Solutions of a~cooperative differential group pursuit game. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 2, pp. 57-78. http://geodesic.mathdoc.fr/item/DA_2010_17_2_a4/

[1] Bondareva O. N., “Nekotorye primeneniya metodov lineinogo programmirovaniya k teorii kooperativnykh igr”, Problemy kibernetiki, 10, 119–140 | MR

[2] Petrosyan L. A., “Ob odnom semeistve differentsialnykh igr na vyzhivanie v prostranstve $\mathbb R^n$”, Dokl. AN SSSR, 161:1 (1965), 52–54 | MR | Zbl

[3] Petrosyan L. A., Differentsialnye igry presledovaniya, Izd-vo Leningr. un-ta, L., 1977, 224 pp. | MR | Zbl

[4] Petrosyan L. A., “Ustoichivost reshenii v differentsialnykh igrakh so mnogimi uchastnikami”, Vestn. Leningr. un-ta. Ser. 1, 1977, no. 4, 46–52 | Zbl

[5] Petrosyan L. A., Danilov N. N., “Ustoichivye resheniya v neantagonisticheskikh differentsialnykh igrakh s netransferabelnymi vyigryshami”, Vestn. Leningr. un-ta. Ser. 1, 1979, no. 1, 52–59 | MR | Zbl

[6] Petrosyan L. A., Tomskii G. V., Geometriya prostogo presledovaniya, Nauka, Novosibirsk, 1983, 140 pp. | MR

[7] Petrosyan L. A., Shiryaev V. D., “Prostoe presledovanie odnim presledovatelem dvukh presleduemykh”, Nekotorye voprosy differentsialnykh i integralnykh uravnenii i ikh prilozheniya, 3, Yakutsk. gos. un-t, Yakutsk, 1978, 103–108 | MR

[8] Isaaks R., “Differential games: a mathematical theory with applications to warfare and pursuit”, Control and optimization, Wiley Press, New York, 1965, 384 pp. | MR

[9] Nash J. F., “Equilibrium points in $n$-person games”, Proc. Nat. Acad. Sci. USA, 36 (1950), 48–49 | DOI | MR | Zbl

[10] Pankratova Ya., Tarashnina S., “How many people can be controlled in a group pursuit game”, Theory and decision, 56, Kluwer Academic Publ., Amsterdam, 2004, 165–181 | MR

[11] Tarashnina S., “Nash equilibria in a differential pursuit game with one pursuer and $m$ evaders”, Game theory and applications, v. III, Nova Science Publ., N.Y., 1998, 115–123 | MR

[12] Tarashnina S., “Time-consistent solution of a cooperative group pursuit game”, Int. Game Theory Rev., 4 (2002), 301–317 | DOI | MR | Zbl

[13] Scarf H. E., “The core of an $n$-person game”, Econometrica, 35 (1967), 50–69 | DOI | MR | Zbl

[14] Shapley L., “On balanced sets and cores”, Nav. Res. Logist., 14 (1967), 453–460 | DOI