On the complexity of the maximum sum length vectors subset choice problem
Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 6, pp. 68-73

Voir la notice de l'article provenant de la source Math-Net.Ru

The maximum sum length vectors subset choice problem is considered. In the case of the fixed dimension of the space this problem is polynomially solvable. It is proved that the problem is NP-hard if the dimension of the space is a part of input. Bibl. 6.
Keywords: vectors sum problem, complexity, NP-completeness.
@article{DA_2009_16_6_a5,
     author = {A. V. Pyatkin},
     title = {On the complexity of the maximum sum length vectors subset choice problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {68--73},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2009_16_6_a5/}
}
TY  - JOUR
AU  - A. V. Pyatkin
TI  - On the complexity of the maximum sum length vectors subset choice problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2009
SP  - 68
EP  - 73
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2009_16_6_a5/
LA  - ru
ID  - DA_2009_16_6_a5
ER  - 
%0 Journal Article
%A A. V. Pyatkin
%T On the complexity of the maximum sum length vectors subset choice problem
%J Diskretnyj analiz i issledovanie operacij
%D 2009
%P 68-73
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2009_16_6_a5/
%G ru
%F DA_2009_16_6_a5
A. V. Pyatkin. On the complexity of the maximum sum length vectors subset choice problem. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 6, pp. 68-73. http://geodesic.mathdoc.fr/item/DA_2009_16_6_a5/