On one twocriterial graph problem
Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 5, pp. 34-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is supposed that each edge of a graph has two number characteristics: the length and the width. The sum of the lengths of the edges of a subgraph is called the length of the subgraph, the maximal width of the edges of subgraph is called the width of subgraph. The length of subgraph is a negative characteristic of subgraph, the width of subgraph is its positive characteristic. The certain kinds of subgraphs are called admissible. A two-criterial problem of searching a Pareto optimal admissible subgraph is considered. Bibl. 5.
Keywords: admissible subgraph, indicator of subgraph's quality, Pareto optimal subgraph.
@article{DA_2009_16_5_a3,
     author = {V. G. Vizing},
     title = {On one twocriterial graph problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {34--40},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2009_16_5_a3/}
}
TY  - JOUR
AU  - V. G. Vizing
TI  - On one twocriterial graph problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2009
SP  - 34
EP  - 40
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2009_16_5_a3/
LA  - ru
ID  - DA_2009_16_5_a3
ER  - 
%0 Journal Article
%A V. G. Vizing
%T On one twocriterial graph problem
%J Diskretnyj analiz i issledovanie operacij
%D 2009
%P 34-40
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2009_16_5_a3/
%G ru
%F DA_2009_16_5_a3
V. G. Vizing. On one twocriterial graph problem. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 5, pp. 34-40. http://geodesic.mathdoc.fr/item/DA_2009_16_5_a3/

[1] Akho A., Khopkroft Dzh., Ulman Dzh., Postroenie i analiz vychislitelnykh algoritmov, Mir, M., 1979, 536 pp. | MR

[2] Zykov A. A., Osnovy teorii grafov, Vuzovskaya kniga, M., 2004, 663 pp.

[3] Kofman A., Vvedenie v teoriyu nechetkikh mnozhestv, Radio i svyaz, M., 1982, 432 pp. | MR

[4] Dijkstra E. W., “A note on two problems in connection with graphs”, Numer. Math., 1 (1959), 269–271 | DOI | MR | Zbl

[5] Kruskal J. B. (Jr.), “On the shortest spanning subtree of a graph and the traveling salesman problem”, Proc. Amer. Math. Soc., 7:1 (1956), 48–50 | DOI | MR | Zbl