Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2009_16_4_a5, author = {P. V. Skums and R. I. Tyshkevich}, title = {Reconstruction conjecture for graphs with restrictions for 4-vertex paths}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {87--96}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2009_16_4_a5/} }
TY - JOUR AU - P. V. Skums AU - R. I. Tyshkevich TI - Reconstruction conjecture for graphs with restrictions for 4-vertex paths JO - Diskretnyj analiz i issledovanie operacij PY - 2009 SP - 87 EP - 96 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2009_16_4_a5/ LA - ru ID - DA_2009_16_4_a5 ER -
P. V. Skums; R. I. Tyshkevich. Reconstruction conjecture for graphs with restrictions for 4-vertex paths. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 4, pp. 87-96. http://geodesic.mathdoc.fr/item/DA_2009_16_4_a5/
[1] Tyurin V., “Rekonstruktsiya razlozhimykh grafov”, Vesti AN BSSR, 1987, no. 3, 16–20 | MR | Zbl
[2] Babel L., “Tree-like $P_4$-connected graphs”, Discrete Math, 191 (1998), 13–23 | DOI | MR | Zbl
[3] Babel L., Olariu S., “On the isomorphism of graphs with few $P_4$s”, Discrete Appl. Math., 84 (1998), 1–3 | DOI | MR | Zbl
[4] Babel L., Olariu S., “On the $p$-connectedness of graphs – a survey”, Discrete Appl. Math., 95 (1999), 11–33 | DOI | MR | Zbl
[5] Biggs N., Algebraic graph theory, Cambridge Univ. Press, Cambridge, 1996, 316 pp. | MR | Zbl
[6] Bondy A., “A graph reconstructor's manual”, Surveys in Combinatorics, London Math. Soc. Lecture Notes Series, Cambridge Univ. Press, Cambridge, 1991, 221–252 | MR
[7] Bondy A., Hemminger R. L., “Graph reconstruction – a survey”, J. Graph Theory, 1 (1977), 227–268 | DOI | MR | Zbl
[8] Brandstädt A., Le V. B., Spinrad J., Graph classes: a survey, SIAM, Philadelphia, 1999, 95 pp. | MR | Zbl
[9] Giakoumakis V., Roussel F., Thuillier H., “On $P_4$-tidy graphs”, Discrete Math. and Theor. Comp. Sci., 1:1 (1997), 17–41 | MR | Zbl
[10] Hammer P. L., Simeone B., “The splittence of a graph”, Combinatorica, 3:1 (1981), 275–284 | DOI | MR
[11] Hell P., Nesetril J., Graphs and homomorphisms, Oxford Univ. Press, Oxford, 2004, 256 pp. | MR | Zbl
[12] Jamison B., Olariu S., “$p$-Components and the homogeneous decomposition of graphs”, SIAM J. Discrete Math., 8 (1995), 448–463 | DOI | MR | Zbl
[13] Kelly P. J., On isometric transformations, PhD thesis, University of Wisconsin, 1942, 95 pp.
[14] Lauri J., Scapellato R., Topics in graph isomorphisms and reconstruction, Cambridge Univ. Press, Cambridge, 2003, 172 pp. | MR | Zbl
[15] Mahadev N. V., Peled U. N., Threshold graphs and related topics, Annals of Discrete Math., 56, 1995, 558 pp. | MR | Zbl
[16] Thatte B., “Some results on the reconstruction problem. $p$-Claw-free, chordal and $P_4$-reducible graphs”, J. Graph Theory, 19:4 (1995), 549–561 | DOI | MR | Zbl
[17] Tyshkevich R., “Decomposition of graphical sequences and unigraphs”, Discrete Math., 220 (2000), 201–238 | DOI | MR | Zbl
[18] Tyshkevich R., Chernyak A., “Decomposition of graphs”, Cybernetics, 21 (1985), 231–242 | DOI | MR
[19] Ulam S. M., A collection of mathematical problems, Wiley (Interscience), New York, 1960, 150 pp. | MR