On partitions into perfect $q$-ary codes
Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 3, pp. 63-73

Voir la notice de l'article provenant de la source Math-Net.Ru

For any admissible $N$ we present two constructions of different partitions of the $N$-dimensional vector space over $GF(q)$ into perfect $q$-ary codes, where $q>2$ is a power of a prime. The lower bounds on the number of such partitions are given. Bibl. 12.
@article{DA_2009_16_3_a3,
     author = {F. I. Solov'eva and A. V. Los'},
     title = {On partitions into perfect $q$-ary codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {63--73},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2009_16_3_a3/}
}
TY  - JOUR
AU  - F. I. Solov'eva
AU  - A. V. Los'
TI  - On partitions into perfect $q$-ary codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2009
SP  - 63
EP  - 73
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2009_16_3_a3/
LA  - ru
ID  - DA_2009_16_3_a3
ER  - 
%0 Journal Article
%A F. I. Solov'eva
%A A. V. Los'
%T On partitions into perfect $q$-ary codes
%J Diskretnyj analiz i issledovanie operacij
%D 2009
%P 63-73
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2009_16_3_a3/
%G ru
%F DA_2009_16_3_a3
F. I. Solov'eva; A. V. Los'. On partitions into perfect $q$-ary codes. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 3, pp. 63-73. http://geodesic.mathdoc.fr/item/DA_2009_16_3_a3/