On quasistability of a~lexicographic MINSUM arrangement problem
Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 2, pp. 74-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multicriteria variant of the well-known combinatorial extremal median arrangement problem with sequential minimization of MINSUM criteria is considered. Necessary and sufficient conditions for quasistability of the problem are obtained, i.e. conditions under which sufficiently small initial data perturbations preserve all lexicographic optima of the original problem and allow occurrence of the new ones. Numerical illustration is given. Bibl. 14.
Keywords: vector MINSUM arrangement problem, lexicographic set, perturbing matrix, quasistability, binary relations.
@article{DA_2009_16_2_a5,
     author = {V. A. Emelichev and O. V. Karelkina},
     title = {On quasistability of a~lexicographic {MINSUM} arrangement problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {74--84},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2009_16_2_a5/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - O. V. Karelkina
TI  - On quasistability of a~lexicographic MINSUM arrangement problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2009
SP  - 74
EP  - 84
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2009_16_2_a5/
LA  - ru
ID  - DA_2009_16_2_a5
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A O. V. Karelkina
%T On quasistability of a~lexicographic MINSUM arrangement problem
%J Diskretnyj analiz i issledovanie operacij
%D 2009
%P 74-84
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2009_16_2_a5/
%G ru
%F DA_2009_16_2_a5
V. A. Emelichev; O. V. Karelkina. On quasistability of a~lexicographic MINSUM arrangement problem. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 2, pp. 74-84. http://geodesic.mathdoc.fr/item/DA_2009_16_2_a5/

[1] Ageev A. A., “Tochnye i priblizhennye algoritmy dlya zadach razmescheniya: obzor poslednikh rezultatov”, Mezhdunar. Sib. konf. po issledovaniyu operatsii, Materialy konferentsii, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 1998, 4–10

[2] Belousov E. G., Andronov V. G., Razreshimost i ustoichivost zadach polinomialnogo programmirovaniya, Izd-vo MGU, M., 1993, 272 pp. | MR | Zbl

[3] Vodennikov A. G., Emelichev V. A., Kuzmin K. G., “Ob odnom tipe ustoichivosti vektornoi kombinatornoi zadachi razmescheniya”, Diskret. analiz i issled. operatsii. Ser. 2, 14:2 (2007), 32–40

[4] Emelichev V. A., Berdysheva R. A., “Ob ustoichivosti i kvaziustoichivosti traektornoi zadachi posledovatelnoi optimizatsii”, Dokl. NAN Belarusi, 43:3 (1999), 41–44 | MR | Zbl

[5] Emelichev V. A., Gurevskii E. E., “O yadre ustoichivosti mnogokriterialnoi kombinatornoi minimaksnoi zadachi”, Diskret. analiz i issled. operatsii, 15:5 (2008), 6–19

[6] Emelichev V. A., Karelkina O. V., “Ob odnom tipe ustoichivosti leksikograficheskoi minisummnoi zadachi razmescheniya”, Materialy IX Mezhd. konf. Problemy prognozirovaniya i gosudarstvennogo regulirovaniya sotsialno-ekonomicheskogo razvitiya, T. 4, Min. ekonomiki RB, Minsk, 2008, 188–190

[7] Emelichev V. A., Podkopaev D. P., “Ustoichivost i regulyarizatsiya vektornykh zadach tselochislennogo lineinogo programmirovaniya”, Diskret. analiz i issled. operatsii. Ser. 2, 8:1 (2001), 47–69 | MR | Zbl

[8] Kristofides N., Teoriya grafov. Algoritmicheskii podkhod, Mir, M., 1978, 432 pp. | MR

[9] Podinovskii V. V., Gavrilov V. M., Optimizatsiya po posledovatelno primenyaemym kriteriyam, Sovetskoe radio, M., 1975, 192 pp. | MR | Zbl

[10] Daskin M. S., Network and discrete location: models, algorithms and applications, John Wiley and Sons, New York, 1995, 520 pp. | MR

[11] Ehrgott M., Multicriteria optimization, Second edition, Springer, Berlin–Heidelberg, 2005, 323 pp. | MR

[12] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problem of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl

[13] Mirchandani P., Francis R., Discrete location theory, John Wiley and Sons, New York, 1990, 555 pp. | MR | Zbl

[14] Tanino T., “Sensitivity analysis in multiobjective optimization”, J. Optimiz. Theory and Appl., 56:3 (1988), 479–499 | DOI | MR | Zbl