Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2009_16_2_a5, author = {V. A. Emelichev and O. V. Karelkina}, title = {On quasistability of a~lexicographic {MINSUM} arrangement problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {74--84}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2009_16_2_a5/} }
TY - JOUR AU - V. A. Emelichev AU - O. V. Karelkina TI - On quasistability of a~lexicographic MINSUM arrangement problem JO - Diskretnyj analiz i issledovanie operacij PY - 2009 SP - 74 EP - 84 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2009_16_2_a5/ LA - ru ID - DA_2009_16_2_a5 ER -
V. A. Emelichev; O. V. Karelkina. On quasistability of a~lexicographic MINSUM arrangement problem. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 2, pp. 74-84. http://geodesic.mathdoc.fr/item/DA_2009_16_2_a5/
[1] Ageev A. A., “Tochnye i priblizhennye algoritmy dlya zadach razmescheniya: obzor poslednikh rezultatov”, Mezhdunar. Sib. konf. po issledovaniyu operatsii, Materialy konferentsii, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 1998, 4–10
[2] Belousov E. G., Andronov V. G., Razreshimost i ustoichivost zadach polinomialnogo programmirovaniya, Izd-vo MGU, M., 1993, 272 pp. | MR | Zbl
[3] Vodennikov A. G., Emelichev V. A., Kuzmin K. G., “Ob odnom tipe ustoichivosti vektornoi kombinatornoi zadachi razmescheniya”, Diskret. analiz i issled. operatsii. Ser. 2, 14:2 (2007), 32–40
[4] Emelichev V. A., Berdysheva R. A., “Ob ustoichivosti i kvaziustoichivosti traektornoi zadachi posledovatelnoi optimizatsii”, Dokl. NAN Belarusi, 43:3 (1999), 41–44 | MR | Zbl
[5] Emelichev V. A., Gurevskii E. E., “O yadre ustoichivosti mnogokriterialnoi kombinatornoi minimaksnoi zadachi”, Diskret. analiz i issled. operatsii, 15:5 (2008), 6–19
[6] Emelichev V. A., Karelkina O. V., “Ob odnom tipe ustoichivosti leksikograficheskoi minisummnoi zadachi razmescheniya”, Materialy IX Mezhd. konf. Problemy prognozirovaniya i gosudarstvennogo regulirovaniya sotsialno-ekonomicheskogo razvitiya, T. 4, Min. ekonomiki RB, Minsk, 2008, 188–190
[7] Emelichev V. A., Podkopaev D. P., “Ustoichivost i regulyarizatsiya vektornykh zadach tselochislennogo lineinogo programmirovaniya”, Diskret. analiz i issled. operatsii. Ser. 2, 8:1 (2001), 47–69 | MR | Zbl
[8] Kristofides N., Teoriya grafov. Algoritmicheskii podkhod, Mir, M., 1978, 432 pp. | MR
[9] Podinovskii V. V., Gavrilov V. M., Optimizatsiya po posledovatelno primenyaemym kriteriyam, Sovetskoe radio, M., 1975, 192 pp. | MR | Zbl
[10] Daskin M. S., Network and discrete location: models, algorithms and applications, John Wiley and Sons, New York, 1995, 520 pp. | MR
[11] Ehrgott M., Multicriteria optimization, Second edition, Springer, Berlin–Heidelberg, 2005, 323 pp. | MR
[12] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problem of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl
[13] Mirchandani P., Francis R., Discrete location theory, John Wiley and Sons, New York, 1990, 555 pp. | MR | Zbl
[14] Tanino T., “Sensitivity analysis in multiobjective optimization”, J. Optimiz. Theory and Appl., 56:3 (1988), 479–499 | DOI | MR | Zbl