Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2009_16_2_a2, author = {I. L. Vasiliev and K. B. Klimentova}, title = {A branch and bound method for the facility location problem with customer preferences}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {21--41}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2009_16_2_a2/} }
TY - JOUR AU - I. L. Vasiliev AU - K. B. Klimentova TI - A branch and bound method for the facility location problem with customer preferences JO - Diskretnyj analiz i issledovanie operacij PY - 2009 SP - 21 EP - 41 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2009_16_2_a2/ LA - ru ID - DA_2009_16_2_a2 ER -
%0 Journal Article %A I. L. Vasiliev %A K. B. Klimentova %T A branch and bound method for the facility location problem with customer preferences %J Diskretnyj analiz i issledovanie operacij %D 2009 %P 21-41 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2009_16_2_a2/ %G ru %F DA_2009_16_2_a2
I. L. Vasiliev; K. B. Klimentova. A branch and bound method for the facility location problem with customer preferences. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 2, pp. 21-41. http://geodesic.mathdoc.fr/item/DA_2009_16_2_a2/
[1] Alekseeva E. V., Kochetov Yu. A., “Geneticheskii lokalnyi poisk dlya zadachi o $p$-mediane s predpochteniyami klientov”, Diskret. analiz i issled. operatsii. Ser. 2, 14:1 (2007), 3–31 | MR
[2] Beresnev V. L., Diskretnye zadachi razmescheniya i polinomy ot bulevykh peremennykh, Izd-vo Instituta matematiki, Novosibirsk, 2005, 408 pp.
[3] Vasilev I. L., Klimentova K. B., Kochetov Yu. A., “Novye nizhnie otsenki dlya zadachi razmescheniya s predpochteniyami klientov”, Zhurn. vychisl. matematiki i mat. fiziki (to appear)
[4] Gorbachevskaya L. E., Polinomialno razreshimye i NP-trudnye dvukhurovnevye zadachi standartizatsii, Dis. $\dots$ kand. fiz.-mat. nauk, Novosibirsk, 1998, 131 pp.
[5] Gorbachevskaya L. E., Dementev V. T., Shamardin Yu. V., “Dvukhurovnevaya zadacha standartizatsii s usloviem edinstvennosti optimalnogo potrebitelskogo vybora”, Diskret. analiz i issled. operatsii. Ser. 2, 6:2 (1999), 3–11 | MR | Zbl
[6] Cánovas L., García S., Labbé M., Marín A., “A strengthened formulation for the simple plant location problem with order”, Operations Research Letters, 35:2 (2007), 141–150 | DOI | MR | Zbl
[7] Dempe S., Foundations of bilevel programming, Kluwer Acad. Publ., Dordrecht, 2002, 320 pp. | MR | Zbl
[8] Hanjoul P., Peeters D., “A facility location problem with clients' preference orderings”, Regional Sci. Urban Econom., 17 (1987), 451–473 | DOI
[9] Hansen P., Kochetov Y., Mladenovic N., Lower bounds for the uncapacitated facility location problem with user preferences, Les Charies du GERAD G–2004–24, 2004, 10 pp.
[10] Kirkpatrick S., Gelatt C. D., Vecchi M. P., “Optimization by simulated annealing”, Science, 220:4598 (1983), 671–680 | DOI | MR
[11] Kochetov Yu., Ivanenko D., “Computationally difficult instances for the uncapacitated facility location problem”, Metaheuristics: progress as real solvers, Springer, New York, 2005, 351–367
[12] Nemhauser G. N., Wolsey L. A., Integer and combinatiorial optimization, A Wiley-Interscience Publication, New York, 1999, 766 pp. | MR | Zbl
[13] Pochet Y., Wolsey L. A., Production planning by mixed integer programming, Springer-Verl., New York, 2006, 477 pp. | MR | Zbl
[14] Van Laarhoven P. J. M., Aarts E. H. L., Simulated annealing: theory and application, D. Reidel Publ. Comp., Dordrecht, 1988, 198 pp.