Near-proper vertex 2-colorings of sparse graphs
Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 2, pp. 16-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G$ is $(2,1)$-colorable if its vertices can be partitioned into subsets $V_1$ and $V_2$ such that in $G[V_1]$ any component contains at most two vertices while $G[V_2]$ is edgeless. We prove that every graph $G$ with the maximum average degree $\mathrm{mad}(G)$ smaller than 7/3 is $(2,1)$-colorable. It follows that every planar graph with girth at least 14 is $(2,1)$-colorable. We also construct a planar graph $G_n$ with $\mathrm{mad}(G_n)=(18n-2)/(7n-1)$ that is not $(2,1)$-colorable. Bibl. 5.
Keywords: planar graph, girth, coloring
Mots-clés : partition.
@article{DA_2009_16_2_a1,
     author = {O. V. Borodin and A. O. Ivanova},
     title = {Near-proper vertex 2-colorings of sparse graphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {16--20},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2009_16_2_a1/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - Near-proper vertex 2-colorings of sparse graphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2009
SP  - 16
EP  - 20
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2009_16_2_a1/
LA  - ru
ID  - DA_2009_16_2_a1
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%T Near-proper vertex 2-colorings of sparse graphs
%J Diskretnyj analiz i issledovanie operacij
%D 2009
%P 16-20
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2009_16_2_a1/
%G ru
%F DA_2009_16_2_a1
O. V. Borodin; A. O. Ivanova. Near-proper vertex 2-colorings of sparse graphs. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 2, pp. 16-20. http://geodesic.mathdoc.fr/item/DA_2009_16_2_a1/

[1] Borodin O. V., Ivanova A. O., Kostochka A. V., “Orientirovannaya 5-raskraska vershin v razrezhennykh grafakh”, Diskret. analiz i issled. operatsii. Ser. 1, 13:1 (2006), 16–32 | MR

[2] Glebov A. N., Zambalaeva D. Zh., “Putevye razbieniya planarnykh grafov”, Sib. elektron. mat. izv., 4 (2007), 450–459 ; http://semr.math.nsc.ru | MR | Zbl

[3] Borodin O. V., Hartke S. G., Ivanova A. O., Kostochka A. V., West D. B., “$(5,2)$-Coloring of sparse graphs”, Sib. elektron. mat. izv., 5 (2008), 417–426 ; http://semr.math.nsc.ru | MR

[4] Borodin O. V., Kim S. J., Kostochka A. V., West D. B., “Homomorphisms of sparse graphs with large girth”, J. Combin. Theory. Ser. B, 90 (2004), 147–159 | DOI | MR | Zbl

[5] Borodin O. V., Kostochka A. V., Nesetril J., Raspaud A., Sopena E., “On the maximal average degree and the oriented chromatic number of a graph”, Discrete Math., 206 (1999), 77–89 | DOI | MR | Zbl