On infinity of the set of boundary classes for the 3-edge-colorability problem
Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 1, pp. 37-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the set of boundary classes for the 3-edge-colorability problem is infinite. Bibl. 5.
Keywords: boundary class, 3-edge-colorability problem.
@article{DA_2009_16_1_a1,
     author = {D. S. Malyshev},
     title = {On infinity of the set of boundary classes for the 3-edge-colorability problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {37--43},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2009_16_1_a1/}
}
TY  - JOUR
AU  - D. S. Malyshev
TI  - On infinity of the set of boundary classes for the 3-edge-colorability problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2009
SP  - 37
EP  - 43
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2009_16_1_a1/
LA  - ru
ID  - DA_2009_16_1_a1
ER  - 
%0 Journal Article
%A D. S. Malyshev
%T On infinity of the set of boundary classes for the 3-edge-colorability problem
%J Diskretnyj analiz i issledovanie operacij
%D 2009
%P 37-43
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2009_16_1_a1/
%G ru
%F DA_2009_16_1_a1
D. S. Malyshev. On infinity of the set of boundary classes for the 3-edge-colorability problem. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 1, pp. 37-43. http://geodesic.mathdoc.fr/item/DA_2009_16_1_a1/

[1] Alekseev V. E., Malyshev D. S., “Kriterii granichnosti i ego primeneniya”, Diskret. analiz i issled. operatsii, 15:6 (2008), 3–10 | MR

[2] Alekseev V. E., “On easy and hard hereditary classes of graphs with respect to the independent set problem”, Discrete Applied Mathematics, 132 (2004), 17–26 | DOI | MR

[3] Alekseev V. E., Korobitsyn D. V., Lozin V. V., “Boundary classes of graphs for the dominating set problem”, Discrete Mathematics, 285 (2004), 1–6 | DOI | MR | Zbl

[4] Alekseev V. E., Boliac R., Korobitsyn D. V., Lozin V. V., “NP-hard graph problems and boundary classes of graphs”, Theoretical Computer Science, 389 (2007), 219–236 | DOI | MR | Zbl

[5] Holyer I., “The NP-completeness of edge-coloring”, SIAM J. Comput., 10:4 (1981), 718–720 | DOI | MR | Zbl