On solutions of systems of functional Boolean equations
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 6, pp. 48-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solutions of systems of functional Boolean equations are considered. For each class $P_2,T_0,T_1,S,T_{01}$, and $S_{01}$ the problem of construction of functional Boolean equations systems with a fixed set of functional constants and one functional variable whose unique solution is of the concerned class is solved. For an arbitrary nonempty set $F$ of $n$-argument Boolean functions, the system of equations with functional constants $\vee$ and $\$ is built with $F$ as the solution set. If the above-mentioned set $F$ is closed under transition to dual functions, then the corresponding system of functional Boolean equations can be constructed without functional constants at all. Bibl. 12.
Keywords: functional Boolean equation, closed class of Boolean functions.
@article{DA_2008_15_6_a4,
     author = {S. S. Marchenkov and V. S. Fedorova},
     title = {On solutions of systems of functional {Boolean} equations},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {48--57},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2008_15_6_a4/}
}
TY  - JOUR
AU  - S. S. Marchenkov
AU  - V. S. Fedorova
TI  - On solutions of systems of functional Boolean equations
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2008
SP  - 48
EP  - 57
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2008_15_6_a4/
LA  - ru
ID  - DA_2008_15_6_a4
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%A V. S. Fedorova
%T On solutions of systems of functional Boolean equations
%J Diskretnyj analiz i issledovanie operacij
%D 2008
%P 48-57
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2008_15_6_a4/
%G ru
%F DA_2008_15_6_a4
S. S. Marchenkov; V. S. Fedorova. On solutions of systems of functional Boolean equations. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 6, pp. 48-57. http://geodesic.mathdoc.fr/item/DA_2008_15_6_a4/

[1] Balyuk A. S., Vinokurov S. F., Gaidukov A. I. i dr., Izbrannye voprosy teorii bulevykh funktsii, Fizmatlit, M., 2001, 191 pp. | Zbl

[2] Gavrilov G. P., “Induktivnye predstavleniya bulevykh funktsii i konechnaya porozhdaemost klassov Posta”, Algebra i logika, 23:1 (1984), 88–99 | MR

[3] Marchenkov S. S., Zamknutye klassy bulevykh funktsii, Fizmatlit, M., 2000, 126 pp. | MR | Zbl

[4] Marchenkov S. S., “Konechnaya porozhdaemost zamknutykh klassov bulevykh funktsii”, Diskret. analiz i issled. operatsii. Ser. 1, 12:1 (2005), 101–118 | MR | Zbl

[5] Marchenkov S. S., “Ekvatsionalnoe zamykanie”, Diskret. matematika, 17:2 (2005), 117–126 | MR | Zbl

[6] Ugolnikov A. B., “O zamknutykh klassakh Posta”, Izv. vuzov. Matematika, 1988, no. 7, 79–88 | MR

[7] Yablonskii S. V., Gavrilov G. P., Kudryavtsev V. B., Funktsii algebry logiki i klassy Posta, Nauka, M., 1966, 119 pp. | MR | Zbl

[8] Ekin O., Foldes S., Hammer P. L., Hellerstein L., “Equational characterizations of Boolean function classes”, Discrete Mathematics, 211 (2000), 27–51 | DOI | MR | Zbl

[9] Foldes S., “Equational classes of Boolean functions via the HSP Theorem”, Algebra Univ., 44 (2000), 309–324 | DOI | MR | Zbl

[10] Hellerstein L., On generalized constraints and certificates, Rutcor Research Report 26–98, Rutgers Univ., Rutcor, 1998, 21 pp.

[11] Kuntzman J., Algébre de Boole, Dunod, Paris, 1965, 319 pp. | MR | Zbl

[12] Pippenger N., “Galois theory for minors of finite functions”, Discrete Mathematics, 254 (2002), 405–419 | DOI | MR | Zbl