Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2008_15_6_a4, author = {S. S. Marchenkov and V. S. Fedorova}, title = {On solutions of systems of functional {Boolean} equations}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {48--57}, publisher = {mathdoc}, volume = {15}, number = {6}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2008_15_6_a4/} }
TY - JOUR AU - S. S. Marchenkov AU - V. S. Fedorova TI - On solutions of systems of functional Boolean equations JO - Diskretnyj analiz i issledovanie operacij PY - 2008 SP - 48 EP - 57 VL - 15 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2008_15_6_a4/ LA - ru ID - DA_2008_15_6_a4 ER -
S. S. Marchenkov; V. S. Fedorova. On solutions of systems of functional Boolean equations. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 6, pp. 48-57. http://geodesic.mathdoc.fr/item/DA_2008_15_6_a4/
[1] Balyuk A. S., Vinokurov S. F., Gaidukov A. I. i dr., Izbrannye voprosy teorii bulevykh funktsii, Fizmatlit, M., 2001, 191 pp. | Zbl
[2] Gavrilov G. P., “Induktivnye predstavleniya bulevykh funktsii i konechnaya porozhdaemost klassov Posta”, Algebra i logika, 23:1 (1984), 88–99 | MR
[3] Marchenkov S. S., Zamknutye klassy bulevykh funktsii, Fizmatlit, M., 2000, 126 pp. | MR | Zbl
[4] Marchenkov S. S., “Konechnaya porozhdaemost zamknutykh klassov bulevykh funktsii”, Diskret. analiz i issled. operatsii. Ser. 1, 12:1 (2005), 101–118 | MR | Zbl
[5] Marchenkov S. S., “Ekvatsionalnoe zamykanie”, Diskret. matematika, 17:2 (2005), 117–126 | MR | Zbl
[6] Ugolnikov A. B., “O zamknutykh klassakh Posta”, Izv. vuzov. Matematika, 1988, no. 7, 79–88 | MR
[7] Yablonskii S. V., Gavrilov G. P., Kudryavtsev V. B., Funktsii algebry logiki i klassy Posta, Nauka, M., 1966, 119 pp. | MR | Zbl
[8] Ekin O., Foldes S., Hammer P. L., Hellerstein L., “Equational characterizations of Boolean function classes”, Discrete Mathematics, 211 (2000), 27–51 | DOI | MR | Zbl
[9] Foldes S., “Equational classes of Boolean functions via the HSP Theorem”, Algebra Univ., 44 (2000), 309–324 | DOI | MR | Zbl
[10] Hellerstein L., On generalized constraints and certificates, Rutcor Research Report 26–98, Rutgers Univ., Rutcor, 1998, 21 pp.
[11] Kuntzman J., Algébre de Boole, Dunod, Paris, 1965, 319 pp. | MR | Zbl
[12] Pippenger N., “Galois theory for minors of finite functions”, Discrete Mathematics, 254 (2002), 405–419 | DOI | MR | Zbl