Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2008_15_6_a3, author = {M. S. Lobanov}, title = {Tight bounds between algebraic immunity and high-order nonlinearities}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {34--47}, publisher = {mathdoc}, volume = {15}, number = {6}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2008_15_6_a3/} }
M. S. Lobanov. Tight bounds between algebraic immunity and high-order nonlinearities. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 6, pp. 34-47. http://geodesic.mathdoc.fr/item/DA_2008_15_6_a3/
[1] Lobanov M. S., “Tochnoe sootnoshenie mezhdu nelineinostyu i algebraicheskoi immunnostyu”, Diskret. matematika, 18:3 (2006), 152–159 | MR | Zbl
[2] Lobanov M. S., “Otsenka nelineinosti vysokikh poryadkov bulevoi funktsii cherez znachenie eë algebraicheskoi immunnosti”, Materialy VI molodezhnoi nauchnoi shkoly po diskretnoi matematike i eë prilozheniyam, Chast 2 (Moskva, aprel 2007), In-t prikladnoi matematiki RAN, M., 2007, 11–16
[3] Canteaut A., “Open problems related to algebraic attacks on stream ciphers”, International workshop on coding and cryptography (WCC 2005) (Bergen, March 2005), Lect. Notes in Comp. Sci., 3969, Springer, Berlin, 2006, 1–11 | MR
[4] Carlet C., “On the higher order nonlinearities of algebraic immune functions”, Advances in cryptology – CRYPTO 2006, Lect. Notes in Comp. Sci., 4117, Springer, Berlin–Heidelberg, 2006, 584–601 | MR | Zbl
[5] Courtois N., Meier W., “Algebraic attacks on stream ciphers with linear feedback”, Advances in cryptology – EUROCRYPT 2003, Lect. Notes in Comp. Sci., 2656, Springer, Berlin–Heidelberg, 2003, 345–359 | MR | Zbl
[6] Dalai D. K., Gupta K. C., Maitra S., “Results on algebraic immunity for cryptographically significant Boolean functions”, Progress in cryptology – Indocrypt 2004 (Chennai, India, December 20–22, 2004), Lect. Notes in Comp. Sci., 3348, Springer, Berlin–Heidelberg, 2004, 92–106 | MR | Zbl
[7] Meier W., Pasalic E., Carlet C., “Algebraic attacks and decomposition of Boolean functions”, Advances in Cryptology – EUROCRYPT 2004, Lect. Notes in Comp. Sci., 3027, Springer, Berlin–Heidelberg, 2004, 474–491 | MR | Zbl
[8] Mesnager S., Improving the lower bound on the higher order nonlinearity of Boolean functions with prescribed algebraic immunity, Cryptology ePrint archive: Report 2007/117, http:// eprint.iacr.org/2007/117 | MR
[9] McWilliams F. J., Sloane N. J. A., The theory of error correcring codes, North-Holland, New York, 1977, 760 pp.