On perfect colorings of the halved 24-cube
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 5, pp. 35-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider perfect 2-colorings of the distance-2 graph of the 24-cube $\{0,1\}^{24}$ with parameters $((20+c,256-c)(c,276-c))$ (i.e., with the eigenvalue 20). We prove that such colorings exist for all $c$ from 1 to 128 except 1, 2, 4, 5, 7, 10, 13 and do not exist for $c=1,2,4,5,7$. Tabl. 2, bibl. 4.
Keywords: perfect coloring, halved $n$-cube.
Mots-clés : equitable partition
@article{DA_2008_15_5_a3,
     author = {D. S. Krotov},
     title = {On perfect colorings of the halved 24-cube},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {35--46},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2008_15_5_a3/}
}
TY  - JOUR
AU  - D. S. Krotov
TI  - On perfect colorings of the halved 24-cube
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2008
SP  - 35
EP  - 46
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2008_15_5_a3/
LA  - ru
ID  - DA_2008_15_5_a3
ER  - 
%0 Journal Article
%A D. S. Krotov
%T On perfect colorings of the halved 24-cube
%J Diskretnyj analiz i issledovanie operacij
%D 2008
%P 35-46
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2008_15_5_a3/
%G ru
%F DA_2008_15_5_a3
D. S. Krotov. On perfect colorings of the halved 24-cube. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 5, pp. 35-46. http://geodesic.mathdoc.fr/item/DA_2008_15_5_a3/

[1] Fon-Der-Flaass D. G., “Sovershennye 2-raskraski giperkuba”, Sib. mat. zhurn., 48:4 (2007), 923–930 | MR

[2] Fon-Der-Flaass D. G., “Sovershennye 2-raskraski 12-mernogo kuba, dostigayuschie granitsy korrelyatsionnoi immunnosti”, Sib. elektron. mat. izv., 4 (2007), 292–295 ; http:// semr.math.nsc.ru/v4/p292-295.pdf | Zbl

[3] Fon-Der-Flaass D., “A bound on correlation immunity”, Sib. elektron. mat. izv., 4 (2007), 133–135 ; http:// semr.math.nsc.ru/v4/p133-135.pdf | Zbl

[4] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979, 744 pp.