On stability kernel of a~multicriteria combinatorial minimax problem
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 5, pp. 6-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multicriteria variant of the combinatorial extremal bottleneck problem with four well-known types of optimality principles (Pareto, Smale, Slater, and lexicographic) is considered. The structure of the set of solutions which preserve respective optimality for any changes of parameters of minimax criteria within “small” neighborhood is investigated. Such set is called a stability kernel. Bibl. 16.
Keywords: multicriteriality, combinatorial optimization, minimax partial criteria, stability, the Pareto set, the Smale set, the Slater set, the lexicographic set.
@article{DA_2008_15_5_a1,
     author = {V. A. Emelichev and E. Gurevsky},
     title = {On stability kernel of a~multicriteria combinatorial minimax problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {6--19},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2008_15_5_a1/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - E. Gurevsky
TI  - On stability kernel of a~multicriteria combinatorial minimax problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2008
SP  - 6
EP  - 19
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2008_15_5_a1/
LA  - ru
ID  - DA_2008_15_5_a1
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A E. Gurevsky
%T On stability kernel of a~multicriteria combinatorial minimax problem
%J Diskretnyj analiz i issledovanie operacij
%D 2008
%P 6-19
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2008_15_5_a1/
%G ru
%F DA_2008_15_5_a1
V. A. Emelichev; E. Gurevsky. On stability kernel of a~multicriteria combinatorial minimax problem. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 5, pp. 6-19. http://geodesic.mathdoc.fr/item/DA_2008_15_5_a1/

[1] Gordeev E. N., “Ob ustoichivosti zadach na uzkie mesta”, Zhurn. vychisl. matematiki i mat. fiziki, 33:9 (1993), 1391–1402 | MR | Zbl

[2] Emelichev V. A., Nikulin Yu. V., “O yadre ustoichivosti vektornoi kvadratichnoi zadachi buleva programmirovaniya”, Kibernetika i sistemnyi analiz, 2001, no. 2, 83–90 | MR | Zbl

[3] Efimchik N. E., Podkopaev D. P., “O yadre i radiuse ustoichivosti v traektornoi zadache vektornoi diskretnoi optimizatsii”, Vestnik Belorussk. gos. un-ta. Ser. 1, 1996, no. 1, 48–52 | MR | Zbl

[4] Kozeratskaya L. N., “Mnozhestvo strogo effektivnykh tochek zadachi chastichno tselochislennoi vektornoi optimizatsii kak kharakteristika ee ustoichivosti”, Kibernetika i sistemnyi analiz, 1997, no. 6, 181–184 | MR | Zbl

[5] Lebedeva T. T., Semenova N. V., Sergienko T. I., “Ustoichivost vektornykh zadach tselochislennoi optimizatsii: vzaimosvyaz s ustoichivostyu mnozhestv optimalnykh i neoptimalnykh reshenii”, Kibernetika i sistemnyi analiz, 2005, no. 4, 90–100 | MR | Zbl

[6] Lebedeva T. T., Sergienko T. I., “Sravnitelnyi analiz razlichnykh tipov ustoichivosti po ogranicheniyam vektornoi zadachi tselochislennoi optimizatsii”, Kibernetika i sistemnyi analiz, 2004, no. 1, 63–70 | MR | Zbl

[7] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, M., 1982, 256 pp. | MR | Zbl

[8] Sergienko I. V., Matematicheskie modeli i metody resheniya zadach diskretnoi optimizatsii, Naukova dumka, Kiev, 1988, 472 pp. | MR

[9] Sergienko I. V., Kozeratskaya L. N., Lebedeva T. T., Issledovanie ustoichivosti i parametricheskii analiz diskretnykh optimizatsionnykh zadach, Naukova dumka, Kiev, 1995, 170 pp. | Zbl

[10] Sergienko I. V., Shilo V. P., Zadachi diskretnoi optimizatsii. Problemy, metody resheniya, issledovaniya, Naukova dumka, Kiev, 2003, 261 pp.

[11] Ehrgott M., Multicriteria optimization, Second edition, Springer, Berlin–Heidelberg, 2005, 323 pp. | MR

[12] Emelichev V. A., Kuzmin K. G., Leonovich A. M., “On quasistability of a vector combinatorial problem with $\Sigma$–MINMAX and $\Sigma$–MINMIN partial criteria”, Comput. Sci. J. Moldova, 12:1 (2004), 3–24 | MR | Zbl

[13] Libura M., Nikulin Y., “Stability and accuracy functions in multicriteria combinatorial optimization problem with $\Sigma$–MINMAX and $\Sigma$–MINMIN partial criteria”, Control and Cybernetics, 33:3 (2004), 511–524 | MR

[14] Smale S., “Global analysis and economics. V: Pareto theory with constraints”, J. Math. Economics, 1:3 (1974), 213–221 | DOI | MR | Zbl

[15] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58:2 (1995), 169–190 | DOI | MR | Zbl

[16] Tanino T., Sawaragi Y., “Stability of nondominated solutions in multicriteria decision-making”, J. Optimization Theory Appl., 30:2 (1980), 229–253 | DOI | MR | Zbl