On stability kernel of a~multicriteria combinatorial minimax problem
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 5, pp. 6-19
Voir la notice de l'article provenant de la source Math-Net.Ru
A multicriteria variant of the combinatorial extremal bottleneck problem with four well-known types of optimality principles (Pareto, Smale, Slater, and lexicographic) is considered. The structure of the set of solutions which preserve respective optimality for any changes of parameters of minimax criteria within “small” neighborhood is investigated. Such set is called a stability kernel. Bibl. 16.
Keywords:
multicriteriality, combinatorial optimization, minimax partial criteria, stability, the Pareto set, the Smale set, the Slater set, the lexicographic set.
@article{DA_2008_15_5_a1,
author = {V. A. Emelichev and E. Gurevsky},
title = {On stability kernel of a~multicriteria combinatorial minimax problem},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {6--19},
publisher = {mathdoc},
volume = {15},
number = {5},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2008_15_5_a1/}
}
TY - JOUR AU - V. A. Emelichev AU - E. Gurevsky TI - On stability kernel of a~multicriteria combinatorial minimax problem JO - Diskretnyj analiz i issledovanie operacij PY - 2008 SP - 6 EP - 19 VL - 15 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2008_15_5_a1/ LA - ru ID - DA_2008_15_5_a1 ER -
V. A. Emelichev; E. Gurevsky. On stability kernel of a~multicriteria combinatorial minimax problem. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 5, pp. 6-19. http://geodesic.mathdoc.fr/item/DA_2008_15_5_a1/