Multidimensional permanents in enumrative problems
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 5, pp. 3-5
Cet article a éte moissonné depuis la source Math-Net.Ru
A permanent is an effective tool that can be used for solving a series of enumerative combinatorial problems. This theory is well-developed [1, 3] and has many applications. In this paper a problem of calculation of the number of 1-perfect binary codes is reduced to calculation of a generalized permanent of a specially constructed multidimensional matrix. Bibl. 3.
Mots-clés :
permanent, multidimensional matrix.
Keywords: perfect code
Keywords: perfect code
@article{DA_2008_15_5_a0,
author = {S. V. Avgustinovich},
title = {Multidimensional permanents in enumrative problems},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {3--5},
year = {2008},
volume = {15},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2008_15_5_a0/}
}
S. V. Avgustinovich. Multidimensional permanents in enumrative problems. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 5, pp. 3-5. http://geodesic.mathdoc.fr/item/DA_2008_15_5_a0/
[1] Avgustinovich S. V., Soloveva F. I., Kheden U., “O razbieniyakh $n$-kuba na neekvivalentnye sovershennye kody”, Probl. peredachi informatsii, 43:4 (2007), 45–50 | MR | Zbl
[2] Gasparyan A. S., “Perechislenie gamma-latinskikh konfiguratsii: reshenie rasshirennoi zadachi o chisle latinskikh pryamougolnikov”, Materialy konferentsii “Diskretnyi analiz i issledovanie operatsii” (Novosibirsk, 28 iyunya–2 iyulya 2004), Izd-vo In-ta matematiki, Novosibirsk, 2004, 83
[3] Mink X., Permanenty, Mir, M., 1982, 213 pp. | MR