The vector subset problem with integer coordinates in Euclidean space with the maximum sum
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 4, pp. 30-43
Voir la notice de l'article provenant de la source Math-Net.Ru
Two problems of selecting a subset of $m$ vectors with the maximum norm of sum from a set of $n$ vectors in Euclidean space $\mathbb R^k$ is considered. It is supposed that the coordinates of the vectors are integer. Using the dynamic programming technique new optimal algorithms are constructed. They have pseudopolynomial complexity, when the dimension $k$ of the vector space is fixed. New algorithms have certain advantages (with respect to earlier known algorithms): the vector subset problem can be solved faster, if $m(k/2)^k$, and the time complexity is $k^{k-1}$ times less for the problem with an additional restriction on the order of vectors independently of $m$. Bibl. 5.
Keywords:
subset selection, Euclidian metric, time complexity, dynamic programming.
Mots-clés : pseudopolynomial algorithm
Mots-clés : pseudopolynomial algorithm
@article{DA_2008_15_4_a2,
author = {E. Kh. Gimadi and Yu. V. Glazkov and I. A. Rykov},
title = {The vector subset problem with integer coordinates in {Euclidean} space with the maximum sum},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {30--43},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2008_15_4_a2/}
}
TY - JOUR AU - E. Kh. Gimadi AU - Yu. V. Glazkov AU - I. A. Rykov TI - The vector subset problem with integer coordinates in Euclidean space with the maximum sum JO - Diskretnyj analiz i issledovanie operacij PY - 2008 SP - 30 EP - 43 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2008_15_4_a2/ LA - ru ID - DA_2008_15_4_a2 ER -
%0 Journal Article %A E. Kh. Gimadi %A Yu. V. Glazkov %A I. A. Rykov %T The vector subset problem with integer coordinates in Euclidean space with the maximum sum %J Diskretnyj analiz i issledovanie operacij %D 2008 %P 30-43 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2008_15_4_a2/ %G ru %F DA_2008_15_4_a2
E. Kh. Gimadi; Yu. V. Glazkov; I. A. Rykov. The vector subset problem with integer coordinates in Euclidean space with the maximum sum. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 4, pp. 30-43. http://geodesic.mathdoc.fr/item/DA_2008_15_4_a2/